Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: new therapeutic strategies for Alzheimer's disease—targeting APP processing in lipid rafts

Abstract

Alzheimer's disease (AD) is the most common cause of age-related dementia. Pathologically, AD is characterized by the deposition in the brain of amyloid-β peptides derived from proteolysis of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. A growing body of evidence implicates cholesterol and cholesterol-rich membrane microdomains in amyloidogenic processing of APP. Here, we review recent findings regarding the association of BACE1, γ-secretase and APP in lipid rafts, and discuss potential therapeutic strategies for AD that are based on knowledge gleaned from the membrane environment that fosters APP processing.

Key Points

  • Cholesterol has been an important focus of research into Alzheimer's disease, but controversy has emerged regarding the therapeutic value of lowering cholesterol as a protective measure against this disease

  • Certain aspects of cholesterol metabolism regulate amyloid-β production through direct modulation of amyloid precursor protein (APP) processing by secretases

  • β-Site APP cleaving enzyme 1, γ-secretase and APP C-terminal fragments are localized in lipid rafts, which are membrane microdomains rich in cholesterol and sphingolipids

  • Amyloidogenic processing of APP occurs in lipid raft domains, and experimental manipulations that disturb the integrity of lipid rafts affect amyloid-β production

  • Compartmentalization of APP C-terminal fragments and secretases offers unique opportunities to selectively target APP processing

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of intracellular amyloid precursor protein trafficking in a model cell
Figure 2: Distribution of amyloid precursor protein and secretases in membrane microdomains
Figure 3: Models of amyloid precursor protein processing

Similar content being viewed by others

References

  1. Alzheimer A (1907) On a peculiar disease of the cerebral cortex [German]. Allgemeine Zeitschrift für Psychiatrie und Psychisch-Gerichtliche Medizin 64: 146–148

    Google Scholar 

  2. Vassar R (2004) BACE1: the β-secretase enzyme in Alzheimer's disease. J Mol Neurosci 23: 105–114

    Article  CAS  Google Scholar 

  3. Allinson TM et al. (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74: 342–352

    Article  CAS  Google Scholar 

  4. Iwatsubo T (2004) The γ-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol 14: 379–383

    Article  CAS  Google Scholar 

  5. Kitazume S et al. (2001) Alzheimer's β-secretase, β-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase. Proc Natl Acad Sci USA 98: 13554–13559

    Article  CAS  Google Scholar 

  6. Li Q et al. (2004) Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1. J Biol Chem 279: 10542–10550

    Article  CAS  Google Scholar 

  7. Lichtenthaler SF et al. (2003) The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J Biol Chem 278: 48713–48719

    Article  CAS  Google Scholar 

  8. von Arnim CA et al. (2005) The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J Biol Chem 280: 17777–17785

    Article  CAS  Google Scholar 

  9. Wong HK et al. (2005) β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J Biol Chem 280: 23009–23017

    Article  CAS  Google Scholar 

  10. Hu X et al. (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9: 1520–1525

    Article  CAS  Google Scholar 

  11. Willem M et al. (2006) Control of peripheral nerve myelination by the β-secretase BACE1. Science 314: 664–666

    Article  CAS  Google Scholar 

  12. Lazarov O et al. (2002) Evidence that synaptically released β-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22: 9785–9793

    Article  CAS  Google Scholar 

  13. Koo EH et al. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci USA 87: 1561–1565

    Article  CAS  Google Scholar 

  14. Sisodia SS (1992) β-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89: 6075–6079

    Article  CAS  Google Scholar 

  15. Huse JT et al. (2000) Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme: the Alzheimer's disease β-secretase. J Biol Chem 275: 33729–33737

    Article  CAS  Google Scholar 

  16. Koo EH et al. (1994) Evidence that production and release of amyloid β-protein involves the endocytic pathway. J Biol Chem 269: 17386–17389

    CAS  Google Scholar 

  17. Thinakaran G et al. (1996) Metabolism of the “Swedish” amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the “β-secretase” site occurs in the Golgi apparatus. J Biol Chem 271: 9390–9397

    Article  CAS  Google Scholar 

  18. Vetrivel KS et al. (2004) Association of γ-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 279: 44945–44954

    Article  CAS  Google Scholar 

  19. Simons K et al. (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39

    Article  CAS  Google Scholar 

  20. Brown DA et al. (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136

    Article  CAS  Google Scholar 

  21. Lichtenberg D et al. (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30: 430–436

    Article  CAS  Google Scholar 

  22. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47: 1597–1598

    Article  CAS  Google Scholar 

  23. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7: 456–462

    Article  CAS  Google Scholar 

  24. Benjannet S et al. (2001) Post-translational processing of beta-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J Biol Chem 276: 10879–10887

    Article  CAS  Google Scholar 

  25. Riddell DR et al. (2001) Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11: 1288–1293

    Article  CAS  Google Scholar 

  26. Cordy JM et al. (2003) Exclusively targeting β-secretase to lipid rafts by GPI-anchor addition up-regulates β-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100: 11735–11740

    Article  CAS  Google Scholar 

  27. Hattori C et al. (2006) BACE1 interacts with lipid raft proteins. J Neurosci Res 84: 912–917

    Article  CAS  Google Scholar 

  28. Ehehalt R et al. (2003) Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J Cell Biol 160: 113–123

    Article  CAS  Google Scholar 

  29. Abad-Rodriguez J et al. (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 167: 953–960

    Article  CAS  Google Scholar 

  30. Vetrivel KS et al. (2005) Spatial segregation of γ-secretase and substrates in distinct membrane domains. J Biol Chem 280: 25892–25900

    Article  CAS  Google Scholar 

  31. Escriba PV (2006) Membrane-lipid therapy: a new approach in molecular medicine. Trends Mol Med 12: 34–43

    Article  CAS  Google Scholar 

  32. Kuo YM et al. (1998) Elevated low-density lipoprotein in Alzheimer's disease correlates with brain Aβ 1–42 levels. Biochem Biophys Res Commun 252: 711–715

    Article  CAS  Google Scholar 

  33. Kivipelto M et al. (2001) Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ 322: 1447–1451

    Article  CAS  Google Scholar 

  34. Jick H et al. (2000) Statins and the risk of dementia. Lancet 356: 1627–1631

    Article  CAS  Google Scholar 

  35. Wolozin B et al. (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57: 1439–1443

    Article  CAS  Google Scholar 

  36. Sparks DL et al. (1994) Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126: 88–94

    Article  CAS  Google Scholar 

  37. Simons M et al. (1998) Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95: 6460–6464

    Article  CAS  Google Scholar 

  38. Fassbender K et al. (2001) Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci USA 98: 5856–5861

    Article  CAS  Google Scholar 

  39. Refolo LM et al. (2000) Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 7: 321–331

    Article  CAS  Google Scholar 

  40. Refolo LM et al. (2001) A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 8: 890–899

    Article  CAS  Google Scholar 

  41. Miida T et al. (2005) Can statin therapy really reduce the risk of Alzheimer's disease and slow its progression? Curr Opin Lipidol 16: 619–623

    Article  CAS  Google Scholar 

  42. Hoyer S et al. (2007) Alzheimer disease—no target for statin treatment: a mini review. Neurochem Res 32: 695–706

    Article  CAS  Google Scholar 

  43. Canevari L et al. (2007) Alzheimer's disease and cholesterol: the fat connection. Neurochem Res 32: 739–750

    Article  CAS  Google Scholar 

  44. Wolozin B et al. (2006) Re-assessing the relationship between cholesterol, statins and Alzheimer's disease. Acta Neurol Scand Suppl 185: 63–70

    Article  CAS  Google Scholar 

  45. Kojro E et al. (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci USA 98: 5815–5820

    Article  CAS  Google Scholar 

  46. Hansen GH et al. (2000) Cholesterol depletion of enterocytes: effect on the Golgi complex and apical membrane trafficking. J Biol Chem 275: 5136–5142

    Article  CAS  Google Scholar 

  47. Hao M et al. (2004) Effects of cholesterol depletion and increased lipid unsaturation on the properties of endocytic membranes. J Biol Chem 279: 14171–14178

    Article  CAS  Google Scholar 

  48. Kirsch C et al. (2003) Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol 65: 843–856

    Article  CAS  Google Scholar 

  49. Runz H et al. (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22: 1679–1689

    Article  CAS  Google Scholar 

  50. Sun Y et al. (2003) Expression of liver X receptor target genes decreases cellular amyloid β peptide secretion. J Biol Chem 278: 27688–27694

    Article  CAS  Google Scholar 

  51. Puglielli L et al. (2001) Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nat Cell Biol 3: 905–912

    Article  CAS  Google Scholar 

  52. Cole SL et al. (2005) Statins cause intracellular accumulation of amyloid precursor protein, β-secretase-cleaved fragments, and amyloid β-peptide via an isoprenoid-dependent mechanism. J Biol Chem 280: 18755–18770

    Article  CAS  Google Scholar 

  53. Sawamura N et al. (2004) Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem 279: 11984–11991

    Article  CAS  Google Scholar 

  54. Grimm MO et al. (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 7: 1118–1123

    Article  CAS  Google Scholar 

  55. Smotrys JE et al. (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73: 559–587

    Article  CAS  Google Scholar 

  56. Scheiffele P et al. (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16: 5501–5508

    Article  CAS  Google Scholar 

  57. Bruckner K et al. (1999) EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22: 511–524

    Article  CAS  Google Scholar 

  58. Sidera C et al. (2005) Post-translational processing of beta-secretase in Alzheimer's disease. Proteomics 5: 1533–1543

    Article  CAS  Google Scholar 

  59. Crameri A et al. (2006) The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Aβ generation in vivo. EMBO J 25: 432–443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Thinakaran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Vetrivel, K., Gong, P. et al. Mechanisms of Disease: new therapeutic strategies for Alzheimer's disease—targeting APP processing in lipid rafts. Nat Rev Neurol 3, 374–382 (2007). https://doi.org/10.1038/ncpneuro0549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing