Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the pathophysiology of hemodialysis access problems as a prelude to developing innovative therapies

Abstract

Maintenance of a functioning vascular access for hemodialysis is a major challenge for nephrologists, vascular surgeons and—most importantly—the patients themselves. Greater insight into the pathophysiology of access thrombosis, stenosis, aneurysm formation, fistula maturation failure and catheter infection will aid the development of innovative ways to prevent and treat these complications. According to the results of observational studies, agents that decrease the release of inflammatory mediators, improve endothelial function, and inhibit the migration and proliferation of vascular smooth-muscle cells might improve the maturation and survival of native hemodialysis fistulas and synthetic hemodialysis grafts by reducing the risks of thrombosis and stenosis. Currently available drugs that interfere with metalloproteinases could prevent the formation of aneurysms, and bacterial quorum sensing offers a promising target for the prevention of biofilm infection in hemodialysis catheters.

Key Points

  • No effective treatments currently exist for the many problems associated with hemodialysis vascular accesses; however, an improved understanding of the basic pathophysiology of these complications has generated innovative ideas for future solutions

  • Observational studies support some of the pathophysiologic insights, but randomized prospective clinical studies are needed for confirmation

  • Drugs that interfere with angiotensin production, improve endothelial function, promote nitric oxide release (including calcium channel blockers), or interfere with inflammatory mediators are the most promising approaches to the prevention of intimal hyperplasia, which is the main cause of thrombosis and stenosis

  • Drugs that interfere with matrix metalloproteinases might reduce the risk of aneurysm formation; however, these agents could also theoretically inhibit access maturation

  • Biofilms are a major problem in the pharmacologic treatment of catheter-related sepsis; two potential future treatment strategies are locking the bacteria in the planktonic phase and inhibiting quorum sensing

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early understanding of the pathogenesis of vascular thrombosis.
Figure 2: The pathogenesis of intimal hyperplasia following vascular access creation.
Figure 3: Putative role of adventitial cells in the pathogenesis of intimal hyperplasia.

Similar content being viewed by others

References

  1. Kolf WJ (1946) The Artificial Kidney. Kampen: JH Koh

    Google Scholar 

  2. Pastan S et al. (2002) Vascular access and increased risk of death among hemodialysis patients. Kidney Int 62: 620–626

    Article  PubMed  Google Scholar 

  3. US Renal Data System (online 2007) USRDS annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States [http://www.usrds.org/atlas.htm] (accessed 6 August 2008)

  4. Lister J (1859) Notice of further researches on the coagulation of the blood. Edinburgh Med J 5: 536–540

    Google Scholar 

  5. Biggers JA et al. (1977) The risk of anticoagulation in hemodialysis patients. Nephron 18: 109–113

    Article  CAS  PubMed  Google Scholar 

  6. Diskin CJ et al. (1998) An analysis of the effect of routine medications on hemodialysis vascular access survival. Nephron 78: 365–368

    Article  CAS  PubMed  Google Scholar 

  7. Saran R et al. (2002) Association between vascular access failure and the use of specific drugs: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 40: 1255–1263

    Article  CAS  PubMed  Google Scholar 

  8. Harter HR et al. (1979) Prevention of thrombosis in patients on hemodialysis by low dose aspirin. N Engl J Med 301: 577–579

    Article  CAS  PubMed  Google Scholar 

  9. Friedman RJ et al. (1977) The effects of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and re-endothelialization. J Clin Invest 60: 1191–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCann RL et al. (1980) Aspirin and dipyridamole decrease intimal hyperplasia in experimental vein grafts. Ann Surg 191: 238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hagen PO et al. (1982) Antiplatelet therapy reduces aortic intimal hyperplasia distal to small diameter vascular prostheses (PTFE) in nonhuman primates. Ann Surg 195: 328–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Graham LM et al. (1989) The effect of duration of acetylsalicylic acid administration on patency and anastomotic hyperplasia of PTFE grafts [abstract]. Am Soc Artif Int Org 35: 83

    Google Scholar 

  13. Endean ED et al. (1986) Effect of thromboxane synthetase inhibition on canine autogenous vein grafts. J Surg Res 40: 297–304

    Article  CAS  PubMed  Google Scholar 

  14. Yevzlin AS et al. (2006) Vascular access outcomes and medication use: a USRDS study. Semin Dial 19: 535–539

    Article  PubMed  Google Scholar 

  15. Andreucci VE et al. (2004) Dialysis Outcomes and Practice Patterns Study (DOPPS) data on medications in hemodialysis patients. Am J Kidney Dis 44 (5 Suppl 2): S61–S67

    Article  Google Scholar 

  16. Puskar D et al. (2002) Survival of primary arteriovenous fistula in 463 patients on chronic hemodialysis. Croat Med J 43: 306–311

    PubMed  Google Scholar 

  17. Diskin CJ et al. (1990) Fish oil to prevent intimal hyperplasia and access thrombosis. Nephron 155: 445–447

    Article  Google Scholar 

  18. Trimarchi H et al. (2006) Clopidogrel diminishes hemodialysis access graft thrombosis. Nephron Clin Pract 102: c128–c130

    Article  CAS  PubMed  Google Scholar 

  19. Janicki K et al. (2003) Preventive administration of clopidogrel after restoring patency of acute dialysis fistula with surgical thrombectomy. Ann Univ Mariae Curie Sklodowska [Med] 58: 211–214

    Google Scholar 

  20. Bowden RG et al. (2007) Effects of omega-3 fatty acid supplementation on vascular access thrombosis in polytetrafluorethylene grafts. J Ren Nutr 17: 126–131

    Article  PubMed  Google Scholar 

  21. Dember LM et al. (2008) Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA 299: 2164–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaffredo T et al. (2005) From hemangioblast to hematopoietic stem cell: an endothelial connection? Exp Hematol 33: 1029–1040

    Article  PubMed  Google Scholar 

  23. Wang L (2006) Endothelial and hematopoietic cell fate of human embryonic stem cells. Trends Cardiovasc Med 16: 89–94

    Article  PubMed  CAS  Google Scholar 

  24. Boos CJ et al. (2007) Assessment of endothelial damage/dysfunction: a focus on circulating endothelial cells. Methods Mol Med 139: 211–224

    Article  CAS  PubMed  Google Scholar 

  25. Ryan US and Ryan JW (1984) The ultrastructural basis of endothelial surface functions. Biorheology 21: 155–170

    Article  CAS  PubMed  Google Scholar 

  26. Ryan US (1985) Immunologic properties of endothelial cells. ASAIO J 8: 58–64

    Google Scholar 

  27. Becker BF et al. (2000) Endothelial function and hemostasis. Z Kardiol 89: 160–167

    CAS  PubMed  Google Scholar 

  28. Bian K et al. (2008) Vascular system: role of nitric oxide in cardiovascular diseases. J Clin Hypertens (Greenwich) 10: 304–310

    Article  CAS  Google Scholar 

  29. Lam CF et al. (2006) Increased blood flow causes coordinated upregulation of arterial eNOS and biosynthesis of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol 290: H786–H793

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi K et al. (2003) Biomechanical response of femoral vein to chronic elevation of blood pressure in rabbits. Am J Physiol Heart Circ Physiol 284: H511–H518

    Article  CAS  PubMed  Google Scholar 

  31. van der Harst P et al. (2008) Rosuvastatin attenuates angiotensin II-induced neointimal formation after stent implantation in the rat. Coron Artery Dis 19: 47–53

    Article  PubMed  Google Scholar 

  32. Nishimura H et al. (1997) Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb Haemost 77: 1189–1195

    Article  CAS  PubMed  Google Scholar 

  33. Katoh M et al. (2000) Angiotensin-converting enzyme inhibitor prevents plasminogen activator inhibitor-1 expression in a rat model with cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis. J Mol Cell Cardiol 32: 73–83

    Article  CAS  PubMed  Google Scholar 

  34. Vaughan DE et al. (1995) Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 95: 995–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geisterfer AA et al. (1988) Angiotensin produces hypertrophy, not hyperplasia, of aortic smooth muscle cells. Circ Res 62: 749–756

    Article  CAS  PubMed  Google Scholar 

  36. Capron L et al. (1991) Effect of rampril, an inhibitor of angiotensin converting enzyme, on the response of rat thoracic aorta to injury with a balloon catheter. J Cardiovasc Pharmacol 18: 207–211

    Article  CAS  PubMed  Google Scholar 

  37. O'Donohoe MK et al. (1991). Chronic ACE inhibition reduces intimal hyperplasia in experimental vein grafts. Ann Surg 214: 727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jahnke T et al. (2005) Characterization of a new double-injury restenosis model in the rat aorta. J Endovasc Ther 12: 318–331

    Article  PubMed  Google Scholar 

  39. Kubo-Inoue M et al. (2002) Long-term inhibition of nitric oxide synthesis increases arterial thrombogenecity in rat carotid artery. Am J Physiol Heart Circ Physiol 282: H1478–H1484

    Article  CAS  PubMed  Google Scholar 

  40. Busk M et al. (2008) Effects of pentoxifylline on the vascular response to injury after angioplasty in rabbit iliac arteries. Basic Res Cardiol 103: 257–264

    Article  CAS  PubMed  Google Scholar 

  41. Diskin CJ (2005) Pharmacologic intervention to prevent hemodialysis vascular access thrombosis: the next generation of treatment? Kidney Int 67: 2505

    Article  PubMed  Google Scholar 

  42. Masaki T et al. (2004) Inhibition of neointimal hyperplasia in vascular grafts by sustained perivascular delivery of paclitaxel. Kidney Int 66: 2061–2069

    Article  CAS  PubMed  Google Scholar 

  43. Rotmans JI et al. (2005) Sirolimus-eluting stents to abolish intimal hyperplasia and improve flow in porcine arteriovenous grafts: a 4-week follow-up study. Circulation 111: 1537–1542

    Article  CAS  PubMed  Google Scholar 

  44. Misra S et al. (2006) BRAVO I: A pilot study of vascular brachytherapy in polytetrafluoroethylene dialysis access grafts. Kidney Int 70: 2006–2013

    Article  CAS  PubMed  Google Scholar 

  45. Schillinger M and Minar E (2008) Local paclitaxel delivery in peripheral vascular disease. N Engl J Med 358: 2406

    Article  CAS  PubMed  Google Scholar 

  46. Moncada S et al. (1987) Biosynthesis of nitric oxide from L-arginine. Nature 327: 524–526

    Article  PubMed  Google Scholar 

  47. Drexler H et al. (1991) Correction of endothelial dysfunction in microcirculation of hypercholesterolemic patients by L-arginine. Lancet 338: 1546–1550

    Article  CAS  PubMed  Google Scholar 

  48. Pearce CG et al. (2008) Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radic Biol Med 44: 73–81

    Article  CAS  PubMed  Google Scholar 

  49. Sajgure A et al. (2007) Angiotensin converting enzyme inhibitors maintain polytetrafluoroethylene graft patency. Nephrol Dial Transplant 22: 1390–1398

    Article  CAS  PubMed  Google Scholar 

  50. Gradzki R et al. (2001) Use of ACE inhibitors is associated with prolonged survival of arteriovenous grafts. Am J Kidney Dis 38: 1240–1244

    Article  CAS  PubMed  Google Scholar 

  51. Diskin CJ (2006) Notes on angiotensin inhibition and vascular access survival: time for randomized controlled trials. Nephrol Dial Transplant 21: 823

    Article  PubMed  Google Scholar 

  52. El-Sanadiki MN et al. (1990) Reduction of intimal hyperplasia and enhanced reactivity of experimental vein bypass grafts with verapamil treatment. Ann Surg 212: 87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aslam S et al. (2006) Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int 70: 2109–2115

    Article  CAS  PubMed  Google Scholar 

  54. Patel MK et al. (2005) Effect of serum withdrawal on the contribution of L-type calcium channels (CaV1.2) to intracellular Ca2+ responses and chemotaxis in cultured human vascular smooth muscle cells. Br J Pharmacol 145: 811–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakao J et al. (1983) Calcium dependency of aortic smooth muscle migration induced by 12-L-hydroxy-5,8,10,14, eicosatetraenoic acid. Effect of A23187, nicardipine and trifluoperazine. Atherosclerosis 46: 309–319

    Article  CAS  PubMed  Google Scholar 

  56. Shima E et al. (2008) Calcium channel blockers suppress cytokine-induced activation of human neutrophils. Am J Hypertens 21: 78–84

    Article  CAS  PubMed  Google Scholar 

  57. Matsumori A et al. (2000) Nifedipine inhibits activation of transcription factor NF-kappaB. Life Sci 67: 2655–2661

    Article  CAS  PubMed  Google Scholar 

  58. Fang CC et al. (2006) Diltiazem suppresses collagen synthesis and IL-1beta-induced TGF-beta1 production on human peritoneal mesothelial cells. Nephrol Dial Transplant 21: 1340–1347

    Article  CAS  PubMed  Google Scholar 

  59. Lenoble Giovannangeli M (1989) New aspects of the pharmacology of pentoxifylline [French]. J Mal Vasc 14 (Suppl A): 35–41

    PubMed  Google Scholar 

  60. Schröer RH (1985) Antithrombotic potential of pentoxifylline. A hemorheologically active drug. Angiology 36: 387–398

    Article  PubMed  Google Scholar 

  61. Weithmann KU (1981) Reduced platelet aggregation by pentoxifylline stimulated pro stacyclin release. Vasa 10: 249–252

    CAS  PubMed  Google Scholar 

  62. Chen YM et al. (2006) Pentoxifylline ameliorates proteinuria through suppression of renal monocyte chemoattractant protein-1 in patients with proteinuric primary glomerular diseases. Kidney Int 69: 1410–1415

    Article  CAS  PubMed  Google Scholar 

  63. Diskin CJ et al. (2007) Will the addition of pentoxifylline reduce proteinuria in patients with diabetic glomerulosclerosis refractory to maximal doses of both an angiotensin-converting enzyme inhibitor and an angiotensin receptor blocker? J Nephrol 20: 410–416

    CAS  PubMed  Google Scholar 

  64. Egashira K et al. (2002) Importance of monocyte chemoattractant protein-1 pathway in neointimal hyperplasia after periarterial injury in mice and monkeys. Circ Res 90: 1167–1172

    Article  CAS  PubMed  Google Scholar 

  65. Maiti R et al. (2007) Effect of pentoxifylline on inflammatory burden, oxidative stress and platelet aggregability in hypertensive type 2 diabetes mellitus patients. Vascul Pharmacol 47: 118–124

    Article  CAS  PubMed  Google Scholar 

  66. Fernandes JL et al. (2008) Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory activity in patients with coronary artery disease—a randomized placebo-controlled study. Atherosclerosis 196: 434–442

    Article  CAS  PubMed  Google Scholar 

  67. de Albuquerque RM et al. (2008) Effects of cilostazol and pentoxifylline on forearm reactive hyperemia response, lipid profile, oxidative stress, and inflammatory markers in patients with intermittent claudication. Angiology [10.1177/0003319707309656]

  68. Busk M et al. (2008) Effects of pentoxifylline on the vascular response to injury after angioplasty in rabbit iliac arteries. Basic Res Cardiol 103: 257–264

    Article  CAS  PubMed  Google Scholar 

  69. Radmilovi A et al. (1987) Shunt thrombosis prevention in hemodialysis patients—double blind, randomized study: pentoxifylline vs placebo. Angiology 38: 499–506

    Article  Google Scholar 

  70. Diskin CJ et al. (2008) Beyond anemia: the clinical impact of the physiologic effects of erythropoietin. Semin Dial [10.1111/j.1525-139X.2008.00443.x]

  71. Fried W et al. (1982) Effect of angiotensin infusion on extrarenal erythropoietin production. J Lab Clin Med 99: 520–525

    CAS  PubMed  Google Scholar 

  72. Du J et al. (1999) Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism. Arterioscler Thromb Vasc Biol 19: 2119–2126

    Article  CAS  PubMed  Google Scholar 

  73. Reddy MK et al. (2007) Erythropoietin induces excessive neointima formation: a study in a rat carotid artery model of vascular injury. J Cardiovasc Pharmacol Ther 12: 237–247

    Article  CAS  PubMed  Google Scholar 

  74. Diskin CJ et al. (2007) A hypothesis: can erythropoietin administration affect the severity of retinopathy in diabetic patients with renal failure? Am J Med Sci 334: 260–264

    Article  PubMed  Google Scholar 

  75. Diskin CJ (2008) Erythropoietin and retinopathy: the beginning of an understanding. Br J Ophthalmol 92: 574

    Article  CAS  PubMed  Google Scholar 

  76. Englesbe MJ et al. (2004) Concomitant blockade of platelet-derived growth factor receptors alpha and beta induces intimal atrophy in baboon PTFE grafts. J Vasc Surg 39: 440–446

    Article  PubMed  Google Scholar 

  77. Razuvaev A et al. (2007) The cyclolignan picropodophyllin attenuates intimal hyperplasia after rat carotid balloon injury by blocking insulin-like growth factor-1 receptor signaling. J Vasc Surg 46: 108–115

    Article  PubMed  Google Scholar 

  78. Falke P et al. (1989) Effects of competitive inhibiter of 3-hydroxy-3 methylglutaryl coenzyme A reductase on human and bovine endothelial cells, fibroblasts, and smooth muscle cells in vitro. Pharmacol Toxicol 64: 173–176

    Article  CAS  PubMed  Google Scholar 

  79. Turner NA et al. (2007) Simvastatin inhibits TNFalpha-induced invasion of human cardiac myofibroblasts via both MMP-9-dependent and -independent mechanisms. J Mol Cell Cardiol 43: 168–176

    Article  CAS  PubMed  Google Scholar 

  80. Turner NA et al. (2007) Comparison of the efficacies of five different statins on inhibition of human saphenous vein smooth muscle cell proliferation and invasion. J Cardiovasc Pharmacol 50: 458–461

    Article  CAS  PubMed  Google Scholar 

  81. Gellman J et al. (1991) Effect of lovastatin on intimal hyperplasia after balloon angioplasty: a study in a hypercholesterolemic rabbit. J Am Coll Cardiol 17: 251–259

    Article  CAS  PubMed  Google Scholar 

  82. Magaraggia M et al. (2007) Porphyrin-photosensitized processes: their applications in the prevention of arterial restenosis. Cardiovasc Hematol Agents Med Chem 5: 278–288

    Article  CAS  PubMed  Google Scholar 

  83. Barton J et al. (2002) PhotoPoint photodynamic therapy inhibits intimal hyperplasia in arteriovenous access grafts. Cardiovasc Radiat Med 3: 147–151

    Article  PubMed  Google Scholar 

  84. Heckenkamp J et al. (2007) Photodynamic therapy reduces intimal hyperplasia in prosthetic vascular bypass grafts in a pig model. Eur J Vasc Endovasc Surg 34: 333–339

    Article  CAS  PubMed  Google Scholar 

  85. Zhang H et al. (2008) Heparin-binding epidermal growth factor-like growth factor signaling in flow-induced arterial remodeling. Circ Res 102: 1275–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilson NV et al. (1991) Effect of low molecular heparin on intimal hyperplasia. Br J Surg 78: 1381–1383

    Article  CAS  PubMed  Google Scholar 

  87. Hirsch GM and Karnovsky MJ (1991) Inhibition of vein graft intimal hyperplasia lesions in the rat by heparin. Am J Pathol 139: 581–587

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Danenberg HD et al. (2008) Neointimal formation is reduced after arterial injury in human crp transgenic mice. Atherosclerosis [10.1016/j.atherosclerosis.2008.01.013]

  89. Seuter F and Bayer AG (1989) Pharmacologic inhibition of experimental atherosclerosis. Z Kardiol 78 (Suppl 6): 117–119

    PubMed  Google Scholar 

  90. Norman PE and House AK (1991) Heparin reduces intimal hyperplasia seen in microvascular vein grafts. Aust NZ J Surg 61: 942–948

    Article  CAS  Google Scholar 

  91. Walsh DB et al. (1990) Intragraft drug infusion as adjunct to balloon catheter for salvage of thrombosed infragenicular vein graft. J Vasc Surg 11: 753–759

    Article  CAS  PubMed  Google Scholar 

  92. Li Q et al. (2008) Influence of human tissue factor pathway inhibitor gene transfection on neointima formation in vein grafts [Chinese]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22: 354–358

    PubMed  Google Scholar 

  93. Hoel AW and Conte MS (2007) Edifoligide: a transcription factor decoy to modulate smooth muscle cell proliferation in vein bypass. Cardiovasc Drug Rev 25: 221–234

    Article  CAS  PubMed  Google Scholar 

  94. Barceló SA et al. (2007) Surgical and endovascular revision of infrainguinal vein bypass grafts: analysis of midterm outcomes from the PREVENT III trial. J Vasc Surg 46: 1173–1179

    Article  Google Scholar 

  95. Magee MJ et al. (2008) Coronary artery bypass graft failure after on-pump and off-pump coronary artery bypass: findings from PREVENT IV. Ann Thorac Surg 85: 494–499

    Article  PubMed  Google Scholar 

  96. Nugent HM et al. (2007) Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J Vasc Surg 46: 548–556

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brems J et al. (1986) A five-year experience with the bovine heterograft for vascular access. Arch Surg 121: 941–944

    Article  CAS  PubMed  Google Scholar 

  98. Raju S (1987) PTFE grafts for hemodialysis access. Techniques for insertion and management of complications. Ann Surg 206: 666–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Longo GM et al. (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110: 625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilson WR et al. (2006) Matrix metalloproteinase-8 and -9 are increased at the site of abdominal aortic aneurysm rupture. Circulation 113: 438–445

    Article  CAS  PubMed  Google Scholar 

  101. Longo GM et al. (2005) MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery 137: 457–462

    Article  PubMed  Google Scholar 

  102. Wilson WR et al. (2008) Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 35: 580–584

    Article  CAS  PubMed  Google Scholar 

  103. Verhallen AM et al. (2007) Cannulating in haemodialysis: rope-ladder or buttonhole technique? Nephrol Dial Transplant 22: 2601–2604

    Article  PubMed  Google Scholar 

  104. Aoki T et al. (2008) Simvastatin suppresses the progression of experimentally induced cerebral aneurysms in rats. Stroke 39: 1276–1278

    Article  CAS  PubMed  Google Scholar 

  105. Roach DM et al. (2002) Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg 23: 260–269

    Article  CAS  PubMed  Google Scholar 

  106. Diskin C et al. (2005) Doxycycline may reduce the incidence of aneurysms in haemodialysis vascular accesses. Nephrol Dial Transplant 20: 959–961

    Article  CAS  PubMed  Google Scholar 

  107. Bronder CM et al. (2008) Fistula elevation procedure: experience with 295 consecutive cases during a 7-year period. J Am Coll Surg 206: 1076–1081

    Article  PubMed  Google Scholar 

  108. Dixon BS (2006) Why don't fistulas mature? Kidney Int 70: 1413–1422

    Article  CAS  PubMed  Google Scholar 

  109. Saad TF (1999) Bacteremia associated with tunneled, cuffed hemodialysis catheters. Am J Kidney Dis 34: 1114–1124

    Article  CAS  PubMed  Google Scholar 

  110. Diskin CJ and Stokes TJ (1995) Efficacy of an attachable silver impregnated subcutaneous cuff for the prevention of catheter-associated infections in patients on chronic maintenance hemodialysis. Nephron 69: 357–359

    Article  CAS  PubMed  Google Scholar 

  111. Gurudev KC et al. (1992) Subclavian vein catheters for haemodialysis with and without a subcutaneous tunnel. J Assoc Physicians India 40: 370–373

    CAS  PubMed  Google Scholar 

  112. Rosenbaum D et al. (2006) Surveillance cultures of tunneled cuffed catheter exit sites in chronic hemodialysis patients are of no benefit. Hemodial Int 10: 365–370

    Article  PubMed  Google Scholar 

  113. Nielsen J et al. (1998) Poor value of surveillance cultures for prediction of septicaemia caused by coagulase-negative staphylococci in patients undergoing haemodialysis with central venous catheters. Scand J Infect Dis 30: 569–572

    Article  CAS  PubMed  Google Scholar 

  114. Centers for Disease Control and Prevention (CDC) (2006) Update: Delayed onset Pseudomonas fluorescens bloodstream infections after exposure to contaminated heparin flush—Michigan and South Dakota, 2005–2006. MMWR Morb Mortal Wkly Rep 55: 961–963

  115. Costerton JW et al. (1978) How bacteria stick. Sci Am 238: 86–95

    Article  CAS  PubMed  Google Scholar 

  116. Suci PA et al. (1994) Investigation into ciprofloxin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38: 2125–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ward KH et al. (1992) Mechanism of persistent infection associated with peritoneal implants. J Med Microbiol 36: 406–413

    Article  CAS  PubMed  Google Scholar 

  118. Leid JG et al. (2002) Human leukocytes adhere to penetrate and respond to Staphylococcus aureus biofilms. Infect Immun 70: 6339–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wyndham RC and Costerton JW (1981) Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within Athabasca oil sands deposit. Appl Environ Microbiol 41: 783–790

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hooke R (1665) Micrographia or Some Physical Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inqueries Thereupon. London: John Martyn & James Allestry

    Google Scholar 

  121. Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40: 2517–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Costerton JW et al. (2007) Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs 30: 757–763

    Article  CAS  PubMed  Google Scholar 

  123. Hentzer M et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22: 3803–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Balaban N et al. (2005) Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin Orthop Relat Res 437: 48–54

    Article  Google Scholar 

  125. Costerton JW et al. (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28: 1062–1068

    Article  CAS  PubMed  Google Scholar 

  126. Shanks RM et al. (2005) Heparin stimulates Staphylococcus aureus biofilm formation. Infect Immun 73: 4596–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Diskin CJ (2007) Catheter-related sepsis in dialysis patients. QJM 100: 666–667

    Article  CAS  PubMed  Google Scholar 

  128. Diskin CJ et al. (2007) Is systemic heparin a risk factor for catheter-related sepsis in dialysis patients? An evaluation of various biofilm and traditional risk factors. Nephron Clin Pract 107: c128–c132

    Article  PubMed  Google Scholar 

  129. Shah CB et al. (2002) Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother 46: 1674–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brewster UC et al. (2005) Effect of intravenous iron on haemodialysis catheter microbial colonization and blood-borne infection. Nephrology (Carlton) 10: 124–128

    Article  CAS  Google Scholar 

  131. Sirken G et al. (2006) Association of different intravenous iron preparations with risk of bacteremia in maintenance hemodialysis patients. Clin Nephrol 66: 348–356

    Article  CAS  PubMed  Google Scholar 

  132. Robinson D et al. (1998) Treatment of infected tunneled venous access hemodialysis catheters with guidewire exchange. Kidney Int 53: 1792–1794

    Article  CAS  PubMed  Google Scholar 

  133. Beathard GA (1999) Management of bacteremia associated with tunneled-cuffed hemodialysis catheters. J Am Soc Nephrol 10: 1045–1049

    CAS  PubMed  Google Scholar 

  134. Falk A et al. (2005) Conversion of temporary hemodialysis catheters to permanent hemodialysis catheters: a retrospective study of catheter exchange versus classic de novo placement. Semin Dial 18: 425–430

    Article  PubMed  Google Scholar 

  135. Mokrzycki MH et al. (2006) Tunnelled haemodialysis catheter bacteraemia: risk factors for bacteraemia recurrence, infectious complications and mortality. Nephrol Dial Transplant 21: 1024–1031

    Article  PubMed  Google Scholar 

  136. Sullivan R et al. (2007) Hemodialysis vascular catheter-related bacteremia. Am J Med Sci 334: 458–465

    Article  PubMed  Google Scholar 

  137. Casey J et al. (2008) Inserting tunnelled hemodialysis catheters using elective guidewire exchange from nontunnelled catheters: is there a greater risk of infection when compared with new-site replacement? Hemodial Int 12: 52–54

    Article  PubMed  Google Scholar 

  138. Norris P et al. (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49: 4272–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ehrlich GD et al. (2005) Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin Orthop Relat Res 437: 59–66

    Article  Google Scholar 

  140. Marion K et al. (2005) A new procedure allowing the complete removal and prevention of hemodialysis biofilms. Blood Purif 23: 339–348

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J Diskin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diskin, C., Stokes, T., Dansby, L. et al. Understanding the pathophysiology of hemodialysis access problems as a prelude to developing innovative therapies. Nat Rev Nephrol 4, 628–638 (2008). https://doi.org/10.1038/ncpneph0947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing