Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Eleven reasons to control the protein intake of patients with chronic kidney disease

Abstract

For many years patients with chronic kidney disease have been advised to control the protein content of their diet. This advice has been given on the basis of a number of reported metabolic effects of lowering protein intake, such as lowering serum urea nitrogen levels, improving phosphocalcic metabolism and insulin resistance and, more recently, ameliorating proteinuria (independent of antiproteinuric medications). The effects on the progression of kidney disease, although spectacular in experimental studies, have been less convincing in humans. It is possible that flawed design of clinical trials is responsible for this discrepancy. In this Review, we comment on experimental findings that indicate that limiting protein intake protects the kidney and ameliorates uremic symptoms, outline how the body adapts to a reduction in protein intake, and describe the metabolic benefits to the patient. We then review the evidence from randomized controlled trials and meta-analyses that pertains to the effects of low-protein diets in adults with chronic kidney disease.

Key Points

  • A high protein load acutely increases glomerular filtration rate, and severity of microalbuminuria and glomerulosclerosis

  • Protein restriction can improve insulin sensitivity, lipid profile and blood pressure, and ameliorate proteinuria, renal osteodystrophy and metabolic acidosis

  • The few high-quality clinical trials of low-protein diets that have been conducted have not detected the same degree of kidney protection as experimental studies

  • Nevertheless, a threshold of 'safe' protein intake for patients with chronic kidney disease of 0.6–0.8 g protein/kg body weight/day is recommended

  • Compliance with low-protein diets can be poor, and individualized monitoring is necessary

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Results of a systematic review of the effect on 'renal death' of low-protein diets in people with chronic kidney disease

References

  1. Kopple JD (1987) Uses and limitations of the balance technique. JPEN J Parenter Enteral Nutr 11 (Suppl): S79–S85

    Article  Google Scholar 

  2. Kopple JD (1997) McCollum Award Lecture, 1996: protein-energy malnutrition in maintenance dialysis patients. Am J Clin Nutr 65: 1544–1557

    Article  CAS  PubMed  Google Scholar 

  3. Maroni B et al. (1985) A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 27: 58–65

    Article  CAS  PubMed  Google Scholar 

  4. Aparicio M et al. (1988) Effect of a low-protein diet on urinary albumin excretion in uremic patients. Nephron 50: 288–291

    Article  CAS  PubMed  Google Scholar 

  5. Gansevoort RT et al. (1995) Additive antiproteinuric effect of ACE inhibition and a low-protein diet in human renal disease. Nephrol Dial Transplant 10: 497–504

    Article  CAS  PubMed  Google Scholar 

  6. Jafar TH et al. (2001) Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int 60: 1131–1140

    Article  CAS  PubMed  Google Scholar 

  7. de Zeeuw D et al. (2004) Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 65: 2309–2320

    Article  CAS  PubMed  Google Scholar 

  8. K/DOQI, National Kidney Foundation (2000) Clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis 35 (Suppl 2): S1–S140

  9. Toigo G et al. (2000) Expert Working Group report on nutrition in adult patients with renal insufficiency (part 1 of 2). Clin Nutr 19: 197–207

    Article  CAS  PubMed  Google Scholar 

  10. Toigo G et al. (2000) Expert working group report on nutrition in adult patients with renal insufficiency (part 2 of 2). Clin Nutr 19: 281–291

    Article  CAS  PubMed  Google Scholar 

  11. Mitch WE and Remuzzi G (2004) Diets for patients with chronic kidney disease, still worth prescribing. J Am Soc Nephrol 15: 234–237

    Article  PubMed  Google Scholar 

  12. Diamond J (1990) Effects of dietary interventions on glomerular pathophysiology. Am J Physiol 258: F1–F8

    Article  CAS  PubMed  Google Scholar 

  13. Premen AJ (1988) Potential mechanisms mediating postprandial renal hyperemia and hyperfiltration. FASEB J 2: 131–137

    Article  CAS  PubMed  Google Scholar 

  14. Mauer SM et al. (1989) Effects of dietary protein content in streptozotocin-diabetic rats. Kidney Int 35: 48–59

    Article  CAS  PubMed  Google Scholar 

  15. Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249: F324–F337

    CAS  PubMed  Google Scholar 

  16. Hostetter TH et al. (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241: F85–F93

    CAS  PubMed  Google Scholar 

  17. Kleinknecht C et al. (1979) Effect of various protein diets on growth, renal function, and survival of uremic rats. Kidney Int 15: 534–541

    Article  CAS  PubMed  Google Scholar 

  18. Hadj-Aissa A et al. (1992) Influence of the level of hydration on the renal response to a protein meal. Kidney Int 42: 1207–1216

    Article  CAS  PubMed  Google Scholar 

  19. Hostetter TH et al. (1986) Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 30: 509–517

    Article  CAS  PubMed  Google Scholar 

  20. Nath KA et al. (1986) Dietary protein restriction in established renal injury in the rat: selective role of glomerular capillary pressure in progressive glomerular dysfunction. J Clin Invest 78: 1199–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El-Nahas AM et al. (1983) Effect of dietary protein restriction on the development of renal failure after subtotal nephrectomy in rats. Clin Sci (Lond) 65: 399–406

    Article  CAS  Google Scholar 

  22. Kenner CH et al. (1985) Effect of protein intake on renal function and structure in partially nephrectomized rats. Kidney Int 27: 739–750

    Article  CAS  PubMed  Google Scholar 

  23. Harris DC and Tay C (1993) Altered metabolism in the ex vivo remnant kidney. II. Effects of metabolic inhibitors and dietary protein. Nephron 64: 417–423

    Article  CAS  PubMed  Google Scholar 

  24. Bankir L and Kriz W (1995) Adaptation of the kidney to protein intake and to urine concentrating activity: similar consequences in health and CRF. Kidney Int 47: 7–24

    Article  CAS  PubMed  Google Scholar 

  25. Jarusiripipat C et al. (1991) Reduction of remnant nephron hypermetabolism by protein restriction. Am J Kidney Dis 18: 367–374

    Article  CAS  PubMed  Google Scholar 

  26. Wiseman MJ et al. (1987) Dietary composition and renal function in healthy subjects. Nephron 46: 37–42

    Article  CAS  PubMed  Google Scholar 

  27. Soroka N et al. (1998) Comparison of a vegetable-based (soya) and an animal-based low-protein diet in predialysis chronic renal failure patients. Nephron 79: 173–180

    Article  CAS  PubMed  Google Scholar 

  28. Williams AJ et al. (1987) Effect of varying quantity and quality of dietary protein intake in experimental renal disease in rats. Nephron 46: 83–90

    Article  CAS  PubMed  Google Scholar 

  29. Nakayama M et al. (1996) Short- or long-term effects of a low-protein diet on fibronectin and transforming growth factor-beta synthesis in Adriamycin-induced nephropathy. J Lab Clin Med 127: 29–39

    Article  CAS  PubMed  Google Scholar 

  30. Peters H et al. (2000) Angiotensin II blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis. Kidney Int 57: 1493–1501

    Article  CAS  PubMed  Google Scholar 

  31. Wang S et al. (2001) Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 60: 96–105

    Article  CAS  PubMed  Google Scholar 

  32. Dixon R and Brunskill NJ (1999) Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states. J Am Soc Nephrol 10: 1487–1497

    CAS  PubMed  Google Scholar 

  33. Thomas ME et al. (1999) Proteinuria induces tubular cell turnover: a potential mechanism for tubular atrophy. Kidney Int 55: 890–898

    Article  CAS  PubMed  Google Scholar 

  34. Cirillo M et al. (1998) Effects of a meat meal on renal sodium handling and sodium balance. Miner Electrolyte Metab 24: 279–284

    Article  CAS  PubMed  Google Scholar 

  35. Munro HN et al. (1987) Protein nutriture of a group of free-living elderly. Am J Clin Nutr 46: 586–592

    Article  CAS  PubMed  Google Scholar 

  36. FAO/WHO/UNU (1985) Energy and protein requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Technical Report Series no. 724. Geneva: OMS

  37. Rand WM et al. (2003) Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr 77: 109–127

    Article  CAS  PubMed  Google Scholar 

  38. Kopple JD et al. (2000) Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int 57: 1688–1703

    Article  CAS  PubMed  Google Scholar 

  39. Ikizler TA et al. (1995) Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol 6: 1386–1391

    CAS  PubMed  Google Scholar 

  40. Pollock CA et al. (1997) Protein intake in renal disease. J Am Soc Nephrol 8: 777–783

    CAS  PubMed  Google Scholar 

  41. Garg AX et al. (2001) Association between renal insufficiency and malnutrition in older adults: results from the NHANES III. Kidney Int 60: 1867–1874

    Article  CAS  PubMed  Google Scholar 

  42. Aparicio M et al. (2000) Nutrition and outcome on renal replacement therapy of patients with chronic renal failure treated by a supplemented very low protein diet. J Am Soc Nephrol 11: 708–716

    CAS  PubMed  Google Scholar 

  43. Mitch WE et al. (1984) The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure. N Engl J Med 311: 623–629

    Article  CAS  PubMed  Google Scholar 

  44. Walser M and Hill S (1999) Can renal replacement be deferred by a supplemented very low protein diet? J Am Soc Nephrol 10: 110–116

    CAS  PubMed  Google Scholar 

  45. Bergstrom J (1984) Discovery and rediscovery of low protein diet. Clin Nephrol 21: 29–35

    CAS  PubMed  Google Scholar 

  46. Kopple JD (2001) The National Kidney Foundation K/DOQI clinical practice guidelines for dietary protein intake for chronic dialysis patients. Am J Kidney Dis 38 (Suppl): S68–S73

    Article  CAS  PubMed  Google Scholar 

  47. Maiorca R et al. (2000) Diet or dialysis in the elderly? The DODE study: a prospective randomized multicenter trial. J Nephrol 13: 267–270

    CAS  PubMed  Google Scholar 

  48. Rigalleau V et al. (1997) A low-protein diet improves insulin sensitivity of endogenous glucose production in predialytic uremic patients. Am J Clin Nutr 65: 1512–1516

    Article  CAS  PubMed  Google Scholar 

  49. Gin H et al. (1994) Effects of a low-protein, low-phosphorus diet on metabolic insulin clearance in patients with chronic renal failure. Am J Clin Nutr 59: 663–666

    Article  CAS  PubMed  Google Scholar 

  50. Rigalleau V et al. (2003) Splanchnic tissues play a crucial role in uremic glucose intolerance. J Ren Nutr 13: 212–218

    Article  PubMed  Google Scholar 

  51. Gin H et al. (1991) Low-protein, low-phosphorus diet and tissue insulin sensitivity in insulin-dependent diabetic patients with chronic renal failure. Nephron 57: 411–415

    Article  CAS  PubMed  Google Scholar 

  52. Aparicio M et al. (1990) Parathormone activity and rate of progression of chronic renal failure in patients on low-protein diet. Nephron 56: 333–334

    Article  CAS  PubMed  Google Scholar 

  53. Aparicio M et al. (1991) Low-protein diet and renal osteodystrophy. Nephron 58: 250–252

    Article  CAS  PubMed  Google Scholar 

  54. Lindenau K et al. (1990) Therapeutic effect of keto acids on renal osteodystrophy: a prospective controlled study. Nephron 55: 133–135

    Article  CAS  PubMed  Google Scholar 

  55. Bernard S et al. (1996) Effects of low-protein diet supplemented with ketoacids on plasma lipids in adult chronic renal failure. Miner Electrolyte Metab 22: 143–146

    CAS  PubMed  Google Scholar 

  56. Peuchant E et al. (1997) Antioxidant effects of a supplemented very low protein diet in chronic renal failure. Free Radic Biol Med 22: 313–320

    Article  CAS  PubMed  Google Scholar 

  57. Kaysen GA et al. (1986) Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int 29: 572–577

    Article  CAS  PubMed  Google Scholar 

  58. Ruilope LM et al. (1992) Additive antiproteinuric effect of converting enzyme inhibition and a low protein intake. J Am Soc Nephrol 3: 1307–1311

    CAS  PubMed  Google Scholar 

  59. Walser M et al. (1996) Treatment of nephrotic adults with a supplemented, very low-protein diet. Am J Kidney Dis 28: 354–364

    Article  CAS  PubMed  Google Scholar 

  60. de Jong PE et al. (1993) Glomerular preload and afterload reduction as a tool to lower urinary protein leakage: will such treatments also help to improve renal function outcome? J Am Soc Nephrol 3: 1333–1341

    CAS  PubMed  Google Scholar 

  61. Ruggenenti P et al. (2003) Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int 63: 2254–2261

    Article  CAS  PubMed  Google Scholar 

  62. Mitch WE (1995) Cellular mechanisms of catabolism activated by metabolic acidosis. Blood Purif 13: 368–374

    Article  CAS  PubMed  Google Scholar 

  63. Reaich D et al. (1995) Mechanisms causing muscle loss in chronic renal failure. Am J Kidney Dis 26: 242–247

    Article  CAS  PubMed  Google Scholar 

  64. Chauveau P et al. (2000) Acidosis and nutritional status in hemodialyzed patients. French Study Group for Nutrition in Dialysis. Semin Dial 13: 241–246

    Article  CAS  PubMed  Google Scholar 

  65. Chauveau P et al. (1999) Outcome of nutritional status and body composition of uremic patients on a very low protein diet. Am J Kidney Dis 34: 500–507

    Article  CAS  PubMed  Google Scholar 

  66. Bellizzi V et al. (2007) Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int 71: 245–251

    Article  CAS  PubMed  Google Scholar 

  67. Elliott P et al. (2006) Association between protein intake and blood pressure: the INTERMAP Study. Arch Intern Med 166: 79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kopple JD et al. (1989) Nutritional status of patients with different levels of chronic renal insufficiency. Modification of Diet in Renal Disease (MDRD) Study Group. Kidney Int 27 (Suppl): S184–S194

    CAS  Google Scholar 

  69. Coresh J et al. (1995) Survival on dialysis among chronic renal failure patients treated with a supplemented low-protein diet before dialysis. J Am Soc Nephrol 6: 1379–1385

    CAS  PubMed  Google Scholar 

  70. Masud T et al. (2002) The precision of estimating protein intake of patients with chronic renal failure. Kidney Int 62: 1750–1756

    Article  CAS  PubMed  Google Scholar 

  71. Bernhard J et al. (2001) Adaptive response to a low-protein diet in predialysis chronic renal failure patients. J Am Soc Nephrol 12: 1249–1254

    CAS  PubMed  Google Scholar 

  72. Kopple JD et al. (1997) Effect of dietary protein restriction on nutritional status in the Modification of Diet in Renal Disease Study. Kidney Int 52: 778–791

    Article  CAS  PubMed  Google Scholar 

  73. Aparicio M et al. (2001) Low protein diets and outcome of renal patients. J Nephrol 14: 433–439

    CAS  PubMed  Google Scholar 

  74. Walser M et al. (1999) Should protein intake be restricted in predialysis patients? Kidney Int 55: 771–777

    Article  CAS  PubMed  Google Scholar 

  75. Combe C et al. (1993) Compliance and effects of nutritional treatment on progression and metabolic disorders of chronic renal failure. Nephrol Dial Transplant 8: 412–418

    CAS  PubMed  Google Scholar 

  76. Rosman JB et al. (1989) Protein-restricted diets in chronic renal failure: a four year follow-up shows limited indications. Kidney Int 27 (Suppl): S96–S102

    CAS  Google Scholar 

  77. Jungers P et al. (1987) Comparison of ketoacids and low protein diet on advanced chronic renal failure progression. Kidney Int 22 (Suppl): S67–S71

    CAS  Google Scholar 

  78. Williams PS et al. (1991) Failure of dietary protein and phosphate restriction to retard the rate of progression of chronic renal failure: a prospective, randomized, controlled trial. Q J Med 81: 837–855

    CAS  PubMed  Google Scholar 

  79. Ihle BU et al. (1989) The effect of protein restriction on the progression of renal insufficiency. N Engl J Med 321: 1773–1777

    Article  CAS  PubMed  Google Scholar 

  80. Locatelli F et al. (1991) Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group. Lancet 337: 1299–1304

    Article  CAS  PubMed  Google Scholar 

  81. Klahr S et al. (1994) The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 330: 877–884

    Article  CAS  PubMed  Google Scholar 

  82. Malvy D et al. (1999) Effects of severe protein restriction with ketoanalogues in advanced renal failure. J Am Coll Nutr 18: 481–486

    Article  CAS  PubMed  Google Scholar 

  83. Di Iorio BR et al. (2003) Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int 64: 1822–1828

    Article  CAS  PubMed  Google Scholar 

  84. Fouque D et al. (1992) Controlled low protein diets in chronic renal insufficiency: meta-analysis. BMJ 304: 216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pedrini MT et al. (1996) The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 124: 627–632

    Article  CAS  PubMed  Google Scholar 

  86. Kasiske BL et al. (1998) A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis 31: 954–961

    Article  CAS  PubMed  Google Scholar 

  87. Fouque D et al. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database of Systematic Reviews 2006, Issue 2. Art. No.: CD001892. DOI: 10.1002/14651858.CD001892.pub2

    Google Scholar 

  88. Rosman JB et al. (1984) Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet 2: 1291–1296

    Article  CAS  PubMed  Google Scholar 

  89. Levey AS et al. (1999) Dietary protein restriction and the progression of chronic renal disease: what have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J Am Soc Nephrol 10: 2426–2439

    CAS  PubMed  Google Scholar 

  90. Fouque D et al. (2000) Low protein diets delay end-stage renal disease in non-diabetic adults with chronic renal failure. Nephrol Dial Transplant 15: 1986–1992

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Fouque.

Ethics declarations

Competing interests

Drs Fouque and Aparicio have received speakers fees from Fresenius-Kabi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fouque, D., Aparicio, M. Eleven reasons to control the protein intake of patients with chronic kidney disease. Nat Rev Nephrol 3, 383–392 (2007). https://doi.org/10.1038/ncpneph0524

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing