Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: renal proteomics—at the crossroads between promise and problems

Abstract

Knowledge of the human genome has fertilized research in the embryonic field of proteomics. The aim of this Review is to examine the recent application of emerging proteomic technologies to diagnosis of renal disease. We discuss the roles, efficacy and diagnostic potential of different proteomic approaches, focusing on current difficulties and potential solutions. Our rudimentary knowledge of the healthy human urine proteome is described, as are studies that have sought to use the urinary proteome as a tool for diagnosis of renal disease. Vignettes of renal proteome are also presented. The integral role of bioinformatics, and the need for standardized sample preservation and reporting of results, are discussed.

Key Points

  • Urine can harbor proteins from all compartments of the kidney; the urinary proteome therefore has the potential to act as a diagnostic and prognostic indicator in patients with renal disease

  • Application of new techniques to mapping of the healthy urinary proteome continues to advance elucidation of this crucial 'baseline' information

  • The wide concentration range of proteins and peptides in urine is a barrier to effective proteomic analysis

  • Proteomic analysis of uremic toxins from plasma, and from renal cells and tissues, also holds promise

  • Despite recent advances in proteomic technologies, the full clinical utility of this type of analysis in nephrology is far from being realized

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of protein discovery and validation steps, plus technical options for proteomic analysis.

Similar content being viewed by others

References

  1. Aebersold R and Mann M (2003) Mass spectrometry-based proteomics. Nature 422: 198–207

    Article  CAS  Google Scholar 

  2. Hachey DL and Chaurand P (2004) Proteomics in reproductive medicine: the technology for separation and identification of proteins. J Reprod Immunol 63: 61–73

    Article  CAS  Google Scholar 

  3. Hirsch J et al. (2004) Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 287: L1–L23

    Article  CAS  Google Scholar 

  4. Gygi SP and Aebersold R (2000) Mass spectrometry and proteomics. Curr Opin Chem Biol 4: 489–494

    Article  CAS  Google Scholar 

  5. Issaq HJ (2001) The role of separation science in proteomics research. Electrophoresis 22: 3629–3638

    Article  CAS  Google Scholar 

  6. Venter JC et al. (2001) The sequence of the human genome. Science 291: 1304–1351

    Article  CAS  Google Scholar 

  7. Lander ES et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921

    Article  CAS  Google Scholar 

  8. Anderson NL et al. (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3: 311–326

    Article  CAS  Google Scholar 

  9. Marshall AG et al. (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17: 1–35

    Article  CAS  Google Scholar 

  10. Ibarrola N et al. (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 75: 6043–6049

    Article  CAS  Google Scholar 

  11. Liu T et al. (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4: 2070–2080

    Article  CAS  Google Scholar 

  12. Hao G et al. (2006) SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci USA 103: 1012–1017

    Article  CAS  Google Scholar 

  13. Ong SE and Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1: 252–262

    Article  CAS  Google Scholar 

  14. Hewitt SM et al. (2004) Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15: 1677–1689

    Article  Google Scholar 

  15. Tencer J et al. (1994) Stability of albumin, protein HC, immunoglobulin G, kappa- and lambda-chain immunoreactivity, orosomucoid and alpha 1-antitrypsin in urine stored at various conditions. Scand J Clin Lab Invest 54: 199–206

    Article  CAS  Google Scholar 

  16. Serafini-Cessi F et al. (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42: 658–676

    Article  CAS  Google Scholar 

  17. Zolotarjova N et al. (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5: 3304–3313

    Article  CAS  Google Scholar 

  18. Marshall T and Williams KM (1986) Electrophoresis indicates protein loss on centrifugation of urine. Clin Chem 32: 2105–2106

    CAS  PubMed  Google Scholar 

  19. Schaub S et al. (2004) Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol 15: 219–227

    Article  CAS  Google Scholar 

  20. Schaub S et al. (2004) Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 65: 323–332

    Article  CAS  Google Scholar 

  21. O'Riordan E et al. (2004) Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol 15: 3240–3248

    Article  Google Scholar 

  22. Schaub S et al. (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am J Transplant 5: 729–738

    Article  CAS  Google Scholar 

  23. Jackson DW et al. (1993) Altered urinary excretion of lysosomal hydrolases in pregnancy. Am J Kidney Dis 22: 649–655

    Article  CAS  Google Scholar 

  24. Taracha E et al. (2004) Alanine aminopeptidase activity in urine: a new marker of chronic alcohol abuse? Alcohol Clin Exp Res 28: 729–735

    Article  CAS  Google Scholar 

  25. Osicka TM et al. (2000) Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage. Diabetes 49: 1579–1584

    Article  CAS  Google Scholar 

  26. Issaq HJ et al. (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 817: 35–47

    Article  CAS  Google Scholar 

  27. Liu H et al. (2002) Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques 32: 898, 900, 902 passim

  28. Cooper JW et al. (2004) Recent advances in capillary separations for proteomics. Electrophoresis 25: 3913–3926

    Article  CAS  Google Scholar 

  29. Giddings J (1987) Concepts and comparisons in multidimensional separation. J High Resolut Chromatogr Commun 10: 319–323

    Article  CAS  Google Scholar 

  30. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Edwards JJ et al. (1982) Proteins of human urine. III. Identification and two-dimensional electrophoretic map positions of some major urinary proteins. Clin Chem 28: 941–948

    CAS  PubMed  Google Scholar 

  32. Griffith OW and Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254: 7558–7560

    CAS  PubMed  Google Scholar 

  33. Brookes PS et al. (2002) High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2: 969–977

    Article  CAS  Google Scholar 

  34. Mann M et al. (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20: 261–268

    Article  CAS  Google Scholar 

  35. Weissinger EM et al. (2004) Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int 65: 2426–2434

    Article  CAS  Google Scholar 

  36. Fung E et al. (2003) The use of SELDI protein chip array technology in renal disease research. In Renal Disease: Techniques and Protocols, 295–314 (Ed Goligorsky MS) Totowa: Humana Press

    Chapter  Google Scholar 

  37. Wang Y (2004) Immunostaining with dissociable antibody microarrays. Proteomics 4: 20–26

    Article  CAS  Google Scholar 

  38. Arthur JM (2003) Proteomics. Curr Opin Nephrol Hypertens 12: 423–430

    Article  CAS  Google Scholar 

  39. Gygi SP et al. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17: 994–999

    Article  CAS  Google Scholar 

  40. DeSouza L et al. (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4: 377–386

    Article  CAS  Google Scholar 

  41. Kiernan UA et al. (2003) Comparative urine protein phenotyping using mass spectrometric immunoassay. J Proteome Res 2: 191–197

    Article  CAS  Google Scholar 

  42. Claverie J-M (2003) Bioinformatics for Dummies. New York: Wiley

    Google Scholar 

  43. Elias JE et al. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2: 667–675

    Article  CAS  Google Scholar 

  44. Li J et al. (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48: 1296–1304

    CAS  PubMed  Google Scholar 

  45. Adam BL et al. (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62: 3609–3614

    CAS  PubMed  Google Scholar 

  46. Granger CB et al. (2004) National Heart, Lung, And Blood Institute Clinical Proteomics Working Group report. Circulation 109: 1697–1703

    Article  Google Scholar 

  47. Oh J et al. (2004) Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics 4: 3485–3497

    Article  CAS  Google Scholar 

  48. Pieper R et al. (2004) Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4: 1159–1174

    Article  CAS  Google Scholar 

  49. Smith G et al. (2005) Development of a high-throughput method for preparing human urine for two-dimensional electrophoresis. Proteomics 5: 2315–2318

    Article  CAS  Google Scholar 

  50. Lafitte D et al. (2002) Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples. Clin Biochem 35: 581–589

    Article  CAS  Google Scholar 

  51. Thongboonkerd V et al. (2002) Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int 62: 1461–1469

    Article  CAS  Google Scholar 

  52. Celis JE et al. (1999) A comprehensive protein resource for the study of bladder cancer: http://biobase.dk/cgi-bin/celis. Electrophoresis 20: 300–309

    Article  CAS  Google Scholar 

  53. Spahr CS et al. (2001) Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 1: 93–107

    Article  CAS  Google Scholar 

  54. Pisitkun T et al. (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101: 13368–13373

    Article  CAS  Google Scholar 

  55. Norden AG et al. (2004) Quantitative amino acid and proteomic analysis: very low excretion of polypeptides >750 Da in normal urine. Kidney Int 66: 1994–2003

    Article  CAS  Google Scholar 

  56. Cutillas PR et al. (2004) The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol 287: F353–F364

    Article  CAS  Google Scholar 

  57. Clarke W et al. (2003) Characterization of renal allograft rejection by urinary proteomic analysis. Ann Surg 237: 660–664

    PubMed  PubMed Central  Google Scholar 

  58. Weissinger EM et al. (2004) Proteomics: a novel tool to unravel the patho-physiology of uraemia. Nephrol Dial Transplant 19: 3068–3077

    Article  CAS  Google Scholar 

  59. Mischak H et al. (2004) Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond) 107: 485–495

    Article  CAS  Google Scholar 

  60. Haubitz M et al. (2005) Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 67: 2313–2320

    Article  CAS  Google Scholar 

  61. Hampel DJ et al. (2001) Toward proteomics in uroscopy: urinary protein profiles after radiocontrast medium administration. J Am Soc Nephrol 12: 1026–1035

    CAS  PubMed  Google Scholar 

  62. Cadieux PA et al. (2004) Surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS): a new proteomic urinary test for patients with urolithiasis. J Clin Lab Anal 18: 170–175

    Article  CAS  Google Scholar 

  63. Rogers MA et al. (2003) Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 63: 6971–6983

    CAS  PubMed  Google Scholar 

  64. Thongboonkerd V et al. (2004) Alterations in the renal elastin-elastase system in type 1 diabetic nephropathy identified by proteomic analysis. J Am Soc Nephrol 15: 650–662

    Article  CAS  Google Scholar 

  65. Kwapiszewska G et al. (2004) Identification of proteins in laser-microdissected small cell numbers by SELDI-TOF and Tandem MS. BMC Biotechnol 4: 30

    Article  Google Scholar 

  66. Chaurand P et al. (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 165: 1057–1068

    Article  CAS  Google Scholar 

  67. Bagshaw RD et al. (2005) A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics 4: 133–143

    Article  CAS  Google Scholar 

  68. Molina H et al. (2005) A proteomic analysis of human hemodialysis fluid. Mol Cell Proteomics 4: 637–650

    Article  CAS  Google Scholar 

  69. Carr S et al. (2004) The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol Cell Proteomics 3: 531–533

    Article  CAS  Google Scholar 

  70. Orchard S et al. (2005) Further steps towards data standardisation: the Proteomic Standards Initiative HUPO 3rd annual congress, Beijing 25-27th October, 2004. Proteomics 5: 337–339

    Article  CAS  Google Scholar 

  71. Hanash S (2004) HUPO initiatives relevant to clinical proteomics. Mol Cell Proteomics 3: 298–301

    Article  CAS  Google Scholar 

  72. Marouga R et al. (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382: 669–678

    Article  CAS  Google Scholar 

  73. Campostrini N et al. (2005) Spot overlapping in two-dimensional maps: a serious problem ignored for much too long. Proteomics 5: 2385–2395

    Article  CAS  Google Scholar 

  74. Cho A and Normile D (2002) Nobel Prize in Chemistry. Mastering macromolecules. Science 298: 527–528

    Article  Google Scholar 

  75. Breiman L et al. (1984) Classification and Regression Trees. Belmont: Wadsworth International Group

    Google Scholar 

  76. Breiman L (2001) Random Forests. Machine Learning 45: 5–32

    Article  Google Scholar 

  77. Qu Y et al. (2002) Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 48: 1835–1843

    CAS  PubMed  Google Scholar 

  78. Woroniecki R et al. (2006) Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood. Am J Nephrol 26: 258–267

    Article  CAS  Google Scholar 

  79. Wagner M et al. (2004) Computational protein biomarker prediction: a case study for prostate cancer. BMC Bioinformatics 5: 26

    Article  Google Scholar 

  80. Yu JK et al. (2004) An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World J Gastroenterol 10: 3127–3131

    Article  CAS  Google Scholar 

  81. Vapnik V (1995) The Nature of Statistical Learning Theory. New York: Springer

    Book  Google Scholar 

  82. Ball G et al. (2002) An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18: 395–404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' studies were supported in part by NIH grants DK45462, DK54602, DK52783 (MSG) and Westchester Artificial Kidney Foundation. E O'Riordan is a recipient of the Kevin J and Gloria B Kiely National Kidney Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edmond O'Riordan or Michael S Goligorsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Riordan, E., Gross, S. & Goligorsky, M. Technology Insight: renal proteomics—at the crossroads between promise and problems. Nat Rev Nephrol 2, 445–458 (2006). https://doi.org/10.1038/ncpneph0241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing