Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: erythropoietin—an old hormone with a new mission?

Abstract

The major physiological function of erythropoietin is the induction of erythropoiesis. A growing body of evidence indicates, however, that this hormone has tissue-protective effects and prevents tissue damage during ischemia and inflammation. This review article summarizes the present knowledge on the cardiovascular and renal protective effects of erythropoietin and discusses the possible underlying mechanisms.

Key Points

  • The physiological function of erythropoietin is the induction of erythropoiesis

  • Erythropoietin prevents tissue damage during ischemia and inflammation

  • These novel properties of erythropoietin have been analyzed in animal models of myocardial infarction, heart failure, and acute and chronic renal failure

  • The tissue-protective effect of erythropoietin might relate to its binding to a different receptor or receptors, or activation of specific intracellular signaling pathways

  • Erythropoietin is a potentially powerful new therapeutic strategy to prevent acute and chronic damage in the cardiovascular system

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular actions of erythropoietin.
Figure 2: The tissue-protective effects of erythropoietin might be explained by three different mechanisms.

Similar content being viewed by others

References

  1. Sasaki R et al. (2001) Pleiotropic functions and tissue-specific expression of erythropoietin. News Physiol Sci 16: 110–113

    CAS  PubMed  Google Scholar 

  2. Goldman SA and Nedergaard M (2004) Erythropoietin strikes a new cord. Nat Med 8: 785–787

    Article  Google Scholar 

  3. Ehrenreich H et al. (2004) Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 19: 195–206

    Article  CAS  Google Scholar 

  4. Brines M and Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6: 484–494

    Article  CAS  Google Scholar 

  5. Carnot P and Deflandre C (1906) Sur l'activité hémopoiétique du sérum au cours de la régénération du sang. C R Acad Sci (Paris) 143: 384–386

    CAS  Google Scholar 

  6. Miyake T et al. (1977) Purification of human erythropoietin. J Biol Chem 252: 5558–5564

    CAS  PubMed  Google Scholar 

  7. Lin FK et al. (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 82: 7580–7584

    Article  CAS  Google Scholar 

  8. Jacobs K et al. (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313: 806–810

    Article  CAS  Google Scholar 

  9. Jacobs C et al. (2000) European best practice guidelines 9-13: anaemia management. Nephrol Dial Transplant 15 (Suppl 4): 33–42

    Article  Google Scholar 

  10. Ferrario E et al. (2004) Treatment of cancer-related anemia with epoetin alfa: a review. Cancer Treat Rev 30: 563–575

    Article  CAS  Google Scholar 

  11. Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med 228: 1–14

    Article  CAS  Google Scholar 

  12. Frank SJ (2000) Receptor dimerization in GH and erythropoietin action—it takes two to tango, but how? Endocrinology 143: 2–10

    Article  Google Scholar 

  13. Seubert N et al. (2003) Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cell 12: 1239–1250

    Article  CAS  Google Scholar 

  14. Jubinsky PT et al. (1997) The β chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood 90: 1867–1873

    CAS  PubMed  Google Scholar 

  15. Brines M et al. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 101: 14907–14912

    Article  CAS  Google Scholar 

  16. Witthuhn BA et al. (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227–236

    Article  CAS  Google Scholar 

  17. Socolovsky M et al. (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98: 181–191

    Article  CAS  Google Scholar 

  18. Wojchowski DM et al. (1999) Signal transduction in the erythropoietin receptor system. Exp Cell Res 253: 143–156

    Article  CAS  Google Scholar 

  19. Sättler MB et al. (2004) Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 11 (Suppl 2): S181–S192

    Article  Google Scholar 

  20. Assandri R et al. (1999) Erythropoietin modulates intracellular calcium in a human neuroblastoma cell line. J Physiol 516: 343–352

    Article  CAS  Google Scholar 

  21. von Lindern M et al. (2000) Protein kinase C alpha controls erythropoietin receptor signaling. J Biol Chem 275: 34719–34727

    Article  CAS  Google Scholar 

  22. Franke TF et al. (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88: 435–437

    Article  CAS  Google Scholar 

  23. Datta SR et al. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241

    Article  CAS  Google Scholar 

  24. Bao H et al. (1999) Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 93: 3757–3773

    CAS  PubMed  Google Scholar 

  25. Chong ZZ et al. (2003) Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol 138: 1107–1118

    Article  CAS  Google Scholar 

  26. Juul SE et al. (1998) Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 52: 235–249

    Article  CAS  Google Scholar 

  27. Kertesz N et al. (2004) The role of erythropoietin in regulating angiogenesis. Dev Biol 276: 101–110

    Article  CAS  Google Scholar 

  28. Anagnostou A et al. (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 87: 5978–5982

    Article  CAS  Google Scholar 

  29. Carlini RG et al. (1999) Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int 55: 546–553

    Article  CAS  Google Scholar 

  30. Chong ZZ et al. (2002) Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106: 2973–2979

    Article  CAS  Google Scholar 

  31. Carlini RG et al. (1995) Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47: 740–745

    Article  CAS  Google Scholar 

  32. Ribatti D et al. (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93: 2627–2636

    CAS  PubMed  Google Scholar 

  33. Bahlmann FH et al. (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103: 921–926

    Article  CAS  Google Scholar 

  34. Bahlmann FH et al. (2003) Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 64: 1648–1652

    Article  CAS  Google Scholar 

  35. Asahara T et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228

    Article  CAS  Google Scholar 

  36. Dzau VJ et al. (2005) Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 46: 7–18

    Article  CAS  Google Scholar 

  37. Heeschen C et al. (2003) Erythropoietin is a potent physiological stimulus for endothelial progenitor cell mobilization. Blood 102: 1340–1346

    Article  CAS  Google Scholar 

  38. Tramontano AF et al. (2003) Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 308: 990–994

    Article  CAS  Google Scholar 

  39. Cai Z et al. (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108: 79–85

    Article  CAS  Google Scholar 

  40. Calvillo L et al. (2003) Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 100: 4802–4806

    Article  CAS  Google Scholar 

  41. Parsa CJ et al. (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112: 999–1007

    Article  CAS  Google Scholar 

  42. Cai Z and Semenza GL (2004) Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 109: 2050–2053

    Article  CAS  Google Scholar 

  43. Cook SA et al. (2002) Transcriptional effects of chronic Akt activation in the heart. J Biol Chem 277: 22528–22533

    Article  CAS  Google Scholar 

  44. Matsui T et al. (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104: 330–335

    Article  CAS  Google Scholar 

  45. Moon C et al. (2003) Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 100: 11612–11617

    Article  CAS  Google Scholar 

  46. Abdelrahman M et al. (2004) Erythropoietin attenuates the tissue injury associated with hemorrhagic shock and myocardial ischemia. Shock 22: 63–69

    Article  CAS  Google Scholar 

  47. van der Meer P et al. (2004) Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur J Heart Fail 6: 853–859

    Article  CAS  Google Scholar 

  48. Hirata A et al. (2005) Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. Cardiovasc Drugs Ther 19: 33–40

    Article  CAS  Google Scholar 

  49. Xu B et al. (2005) Recombinant human erythropoietin pretreatment attenuates myocardial infarct size: a possible mechanism involves heat shock protein 70 and attenuation of nuclear factor-κB. Ann Clin Lab Sci 35: 161–168

    CAS  PubMed  Google Scholar 

  50. Rui T et al. (2005) Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc Res 65: 719–727

    Article  CAS  Google Scholar 

  51. Hanlon PR et al. (2005) Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling. FASEB J 19: 1323–1325

    Article  CAS  Google Scholar 

  52. Bullard AJ et al. (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100: 397–403

    Article  CAS  Google Scholar 

  53. Stohlawetz PJ et al. (2000) Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 95: 2983–2989

    CAS  PubMed  Google Scholar 

  54. Fuste B et al. (2002) Erythropoietin triggers a signaling pathway in endothelial cells and increases the thrombogenicity of their extracellular matrices in vitro. Thromb Haemost 88: 678–685

    Article  Google Scholar 

  55. Wolf RF et al. (1997) Erythropoietin potentiates thrombus development in a canine arterio-venous shunt model. Thromb Haemost 77: 1020–1024

    Article  CAS  Google Scholar 

  56. Besarab A et al. (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590

    Article  CAS  Google Scholar 

  57. Quaschning T et al. (2003) Erythropoietin-induced excessive erythrocytosis activates the tissue endothelin system in mice. FASEB J 17: 259–261

    Article  CAS  Google Scholar 

  58. Leist M et al. (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305: 239–242

    Article  CAS  Google Scholar 

  59. Fiordaliso F et al. (2005) A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci USA 102: 2046–2051

    Article  CAS  Google Scholar 

  60. Lacombe C et al. (1988) Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest 81: 620–623

    Article  CAS  Google Scholar 

  61. Koury ST et al. (1991) Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77: 2497–2503

    CAS  PubMed  Google Scholar 

  62. Maxwell PH et al. (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44: 1149–1162

    Article  CAS  Google Scholar 

  63. Bachmann S et al. (1993) Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41: 335–341

    Article  CAS  Google Scholar 

  64. Eckardt KU et al. (1993) Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int 43: 815–823

    Article  CAS  Google Scholar 

  65. Fandrey J (2004) Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286: R977–R988

    Article  CAS  Google Scholar 

  66. von Wussow U et al. (2005) Is the renal production of erythropoietin controlled by the brain stem? Am J Physiol Endocrinol Metab 289: E82–E86

    Article  CAS  Google Scholar 

  67. Westenfelder C (1999) Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int 55: 808–820

    Article  CAS  Google Scholar 

  68. Bahlmann FH et al. (2004) Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 100: 1006–1012

    Article  Google Scholar 

  69. Yang CW et al. (2003) Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J 17: 1754–1755

    Article  CAS  Google Scholar 

  70. Sharples EJ et al. (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15: 2115–2124

    Article  CAS  Google Scholar 

  71. Bagnis C et al. (2001) Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 16: 932–938

    Article  CAS  Google Scholar 

  72. Gong H et al. (2004) EPO and α-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66: 683–695

    Article  CAS  Google Scholar 

  73. Vesey DA et al. (2004) Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 19: 348–355

    Article  CAS  Google Scholar 

  74. Patel NS et al. (2004) Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int 6: 983–989

    Article  Google Scholar 

  75. Garcia DL et al. (1988) Anemia lessens and its prevention with recombinant human erythropoietin worsens glomerular injury and hypertension in rats with reduced renal mass. Proc Natl Acad Sci USA 85: 6142–6146

    Article  CAS  Google Scholar 

  76. Gouva C et al. (2004) Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int 66: 753–760

    Article  Google Scholar 

  77. Badorff C et al. (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107: 1024–1032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Haller.

Ethics declarations

Competing interests

Danilo Fliser has received honoraria from Roche, Berlin-Chemie and AMGEN. FH Bahlmann has received honoraria from AMGEN and Roche. Hermann Haller has received honoraria from Novartis, Roche, AMGEN, Sankyo, Bayer, MSD, Asche-Chiesi, Menarini and is a consultant for Sankyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliser, D., Bahlmann, F., deGroot, K. et al. Mechanisms of Disease: erythropoietin—an old hormone with a new mission?. Nat Rev Cardiol 3, 563–572 (2006). https://doi.org/10.1038/ncpcardio0609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing