Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunomodulation of atherosclerosis with a vaccine

Abstract

Experimental observations have established that the innate and adaptive immune mechanisms both have roles in the modulation of atherosclerosis. The complex function that the immune system has in the pathophysiology of atherosclerosis is highlighted by the fact that both proatherogenic and atheroprotective effects of immune activation can be demonstrated. An immune response to the protein and lipid components of oxidized LDL cholesterol has been observed in experimental models, and immunization with these antigens has generally reduced atherosclerosis. The findings suggest the tantalizing possibility that an atheroprotective vaccine can be developed. Our laboratories have identified several antigenic epitopes in the human apolipoprotein B100 component of LDL cholesterol. Active immunization with some of these epitopes has reduced atherosclerosis in hyperlipidemic mice. We believe, therefore, that a vaccine based on apolipoprotein B100-related peptide could have a role in reducing atherosclerosis. In this review, we discuss the possible immunologic mechanisms by which vaccines against atherosclerosis might work and the ways in which such treatment might be most effectively administered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the potential juxtaposed roles of the innate immune response in atherosclerosis.
Figure 2: A schematic representation of the potential juxtaposed roles of the adaptive immune response to specific antigens.

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340: 115–126

    Article  CAS  Google Scholar 

  2. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41 (4 Suppl S): S15S–S22S

    Article  Google Scholar 

  3. Binder CJ et al. (2002) Innate and acquired immunity in atherogenesis. Nat Med 8: 1218–1226

    Article  CAS  Google Scholar 

  4. Hansson GK et al. (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91: 281–291

    Article  CAS  Google Scholar 

  5. Nilsson J et al. (2005) Immunomodulation of atherosclerosis: implications for vaccine development. Arterioscler Thromb Vasc Biol 25: 18–28

    Article  CAS  Google Scholar 

  6. Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927–930

    Article  CAS  Google Scholar 

  7. Xu XH et al. (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104: 3103–3108

    Article  CAS  Google Scholar 

  8. Edfeldt K et al. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105: 1158–1161

    Article  CAS  Google Scholar 

  9. Michelsen KS et al. (2004) Lack of TLR4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101: 10679–10684

    Article  CAS  Google Scholar 

  10. Bjorkbacka H et al. (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10: 416–421

    Article  Google Scholar 

  11. Shaw PX et al. (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105: 1731–1740

    Article  CAS  Google Scholar 

  12. Binder CJ et al. (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9: 736–743

    Article  CAS  Google Scholar 

  13. Binder CJ et al. (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46: 1353–1363

    Article  CAS  Google Scholar 

  14. Binder CJ et al. (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114: 427–437

    Article  CAS  Google Scholar 

  15. Neto JRF et al. (2004) Passive immunization with monoclonal (IgM) antibody to phosphorylcholine, an oxidized LDL related neoantigen, reduces accelerated atherosclerosis in a vein-graft model in apo E null mice [abstract]. Circulation 110: III–52

    Google Scholar 

  16. Buono C et al. (2002) Influence of C3 deficiency on atherosclerosis. Circulation 105: 3025–3031

    Article  CAS  Google Scholar 

  17. Persson L et al. (2004) Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E−/− Low-density Lipoprotein receptor−/− mice. Arterioscler Thromb Vasc Biol 24: 1062–1067

    Article  CAS  Google Scholar 

  18. Constant SL and Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15: 297–322

    Article  CAS  Google Scholar 

  19. Frostegard J et al. (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145: 33–43

    Article  CAS  Google Scholar 

  20. Zhou X et al. (1998) Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 101: 1717–1725

    Article  CAS  Google Scholar 

  21. Zhou X et al. (2000) Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102: 2919–2922

    Article  CAS  Google Scholar 

  22. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101: 455–458

    Article  CAS  Google Scholar 

  23. Mallat Z et al. (2003) Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108: 1232–1237

    Article  CAS  Google Scholar 

  24. Pinderski Oslund LJ et al. (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 19: 2847–2853

    Article  CAS  Google Scholar 

  25. Robertson AK et al. (2003) Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J Clin Invest 112: 1342–1350

    Article  CAS  Google Scholar 

  26. Tupin E et al. (2004) CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 199: 417–422

    Article  CAS  Google Scholar 

  27. Frostegard J (2002) Autoimmunity, oxidized LDL and cardiovascular disease. Autoimmun Rev 1: 233–237

    Article  CAS  Google Scholar 

  28. Tornvall P et al. (2003) Autoantibodies against modified low-density lipoproteins in coronary artery disease. Atherosclerosis 167: 347–353

    Article  CAS  Google Scholar 

  29. Perschinka H et al. (2003) Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 23: 1060–1065

    Article  CAS  Google Scholar 

  30. Xu Q et al. (1993) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341: 255–259

    Article  CAS  Google Scholar 

  31. Stemme S et al. (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 92: 3893–3897

    Article  CAS  Google Scholar 

  32. Afek A et al. (2000). Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J Autoimmun 14: 115–121

    Article  CAS  Google Scholar 

  33. Xu Q et al. (1992). Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 12: 789–799

    Article  CAS  Google Scholar 

  34. George J et al. (1998) Induction of early atherosclerosis in LDL-receptor deficient mice immunized with β2 glycoprotein I. Circulation 11: 1108–1115

    Article  Google Scholar 

  35. Palinski W et al. (1995) Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci USA 92: 821–825

    Article  CAS  Google Scholar 

  36. Ameli S et al. (1996) Effect of immunization with homologous LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 16: 1074–1079

    Article  CAS  Google Scholar 

  37. Nilsson J et al. (1997) Immunization with homologous oxidized low density lipoprotein reduces neointimal formation after balloon in hypercholesterolemic rabbits. J Am Coll Cardiol 30: 1886–1891

    Article  CAS  Google Scholar 

  38. Freigang S et al. (1998) Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 18: 1972–1982

    Article  CAS  Google Scholar 

  39. Zhou X et al. (2001) LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21: 108–114

    Article  CAS  Google Scholar 

  40. Chyu KY et al. (2004) Timing affects the efficacy of LDL immunization on atherosclerotic lesions in apo E (−/−) mice. Atherosclerosis 176: 27–35

    Article  CAS  Google Scholar 

  41. Monsonego A and Weiner HL (2003) Immunotherapeutic approaches to Alzheimer's disease. Science 302: 834–838

    Article  CAS  Google Scholar 

  42. Fong LG et al. (1987) Non enzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res 12: 1466–1477

    Google Scholar 

  43. Hulthe J et al. (2001). Antibodies to oxidized LDL in relation to intima-media thickness in carotid and femoral arteries in 58-year-old subjectively clinically healthy men. Arterioscler Thromb Vasc Biol 21: 101–107

    Article  CAS  Google Scholar 

  44. Fukumoto M et al. (2000) Antibodies against oxidized LDL and carotid artery intima-media thickness in a healthy population. Arterioscler Thromb Vasc Biol 20: 703–707

    Article  CAS  Google Scholar 

  45. Hulthe J et al. (2001) Antibodies to oxidized LDL in relation to carotid atherosclerosis, cell adhesion molecules, and phospholipase A2 . Arterioscler Thromb Vasc Biol 21: 269–274

    Article  CAS  Google Scholar 

  46. Palinski W and Witztum JL (2000) Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med 247: 371–380

    Article  CAS  Google Scholar 

  47. Fredrikson GN et al. (2003) Identification of immune responses against aldehyde-modified peptide sequences in ApoB associated with cardiovascular disease. Arterioscler Thromb Vasc Biol 23: 872–878

    Article  CAS  Google Scholar 

  48. Fredrikson GN et al. (2003) inhibition of atherosclerosis in ApoE-null mice by immunization with ApoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 23: 879–884

    Article  CAS  Google Scholar 

  49. Reyes OS et al. (2002) Immunization with a novel human Apo B100 related peptide reduces atherosclerosis and inflammation in Apo E null mice. J Am Coll Cardiol 39 (Suppl A): S240A

    Article  Google Scholar 

  50. Schipou A et al. (2004) Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110: 2047–2052

    Article  Google Scholar 

  51. Chen Y et al. (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376: 177–180

    Article  CAS  Google Scholar 

  52. Miller A et al. (1991) Antigen-driven bystander suppression following oral administration of antigens. J Exp Med 174: 791–798

    Article  CAS  Google Scholar 

  53. Harats D et al. (2002) Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 40: 1333–1338

    Article  CAS  Google Scholar 

  54. George J et al. (2004) Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with β2-glycoprotein I. Cardiovasc Res 62: 603–609

    Article  CAS  Google Scholar 

  55. Maron R et al. (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106: 1708–1715

    Article  CAS  Google Scholar 

  56. Davidson MH et al. (2003) The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 169: 113–120

    Article  CAS  Google Scholar 

  57. Madjid M et al. (2003) Influenza and cardiovascular disease: a new opportunity for prevention and the need for further studies. Circulation 108: 2730–2736

    Article  Google Scholar 

  58. Nichol KL et al. (2003) Influenza vaccination and reduction in hospitalizations for cardiac disease and stroke among the elderly. N Engl J Med 348: 1322–1332

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of many colleagues in the Atherosclerosis Research Center at Cedars Sinai Medical Center and at the University of Lund to this work. We thank the Eisner Foundation, the Heart Fund, United Hostesses, and the Entertainment Industry Foundation for support. We used hybridoma technology provided by Dr Patricia Gearhart at the NIH in our work on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prediman K Shah.

Ethics declarations

Competing interests

PK Shah and J Nilsson are co-inventors and hold patents for peptide vaccines for atherosclerosis. By institutional patent the rights are assigned to Cedars-Sinai Medical Center, Los Angeles, CA, USA, and Lund University, Sweden, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P., Chyu, KY., Fredrikson, G. et al. Immunomodulation of atherosclerosis with a vaccine. Nat Rev Cardiol 2, 639–646 (2005). https://doi.org/10.1038/ncpcardio0372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing