Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potential volcanic impacts on future climate variability

Abstract

Volcanic activity plays a strong role in modulating climate variability1. Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios2,3,4. Here, we explore how sixty possible volcanic futures, consistent with ice-core records5, impact climate variability projections of the Norwegian Earth System Model (NorESM)6 under RCP4.5 (ref. 7). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become 50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence8. These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Historical and plausible future volcanic forcing.
Figure 2: Annual-mean GMST.
Figure 3: Decadal temperature means and trends.
Figure 4: Decadal means of large-scale climate indicators.
Figure 5: Time of emergence of anthropogenic GMST changes.

References

  1. Schurer, A. P., Tett, S. F. B. & Hegerl, G. C. Small influence of solar variability on climate over the past millennium. Nat. Geosci. 7, 104–108 (2014).

    Article  CAS  Google Scholar 

  2. Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 953–1028 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  3. Taylor, K. E. et al. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  4. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  5. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Article  CAS  Google Scholar 

  6. Bentsen, M. et al. The Norwegian Earth System Model, NorESM1-M—Part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720 (2013).

    Article  Google Scholar 

  7. Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  8. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    Article  Google Scholar 

  9. Hyde, W. T. & Crowley, T. J. Probability of future climatically significant volcanic eruptions. J. Clim. 13, 1445–1450 (2000).

    Article  Google Scholar 

  10. Parker, D. E. & Brownscombe, J. L. Stratospheric warming following the El Chichón volcanic eruption. Nature 301, 406–408 (1983).

    Article  Google Scholar 

  11. Robock, A. & Mao, J. The volcanic signal in surface temperature observations. J. Clim. 8, 1086–1103 (1995).

    Article  Google Scholar 

  12. Iles, C. E. & Hegerl, G. C. Systematic change in global patterns of streamflow following volcanic eruptions. Nat. Geosci. 8, 838–842 (2015).

    Article  CAS  Google Scholar 

  13. Liu, F. et al. Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep. 6, 24331 (2016).

    Article  CAS  Google Scholar 

  14. Shindell, D. T., Schmidt, G. A., Mann, M. E. & Faluvegi, G. Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res. 109, D05104 (2004).

    Article  Google Scholar 

  15. Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    Article  Google Scholar 

  16. Gleckler, P. J. et al. Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature 439, 675 (2006).

    Article  CAS  Google Scholar 

  17. Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res. 114, D16104 (2009).

    Article  Google Scholar 

  18. Swingedouw, D. et al. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat. Commun. 6, 6545 (2015).

    Article  CAS  Google Scholar 

  19. Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010).

    Article  Google Scholar 

  20. Church, J. A., White, N. J. & Arblaster, J. M. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438, 74–77 (2005).

    Article  CAS  Google Scholar 

  21. Hansen, J. et al. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res. 93, 9341–9364 (1988).

    Article  CAS  Google Scholar 

  22. Shiogama, H. et al. Possible influence of volcanic activity on the decadal potential predictability of the natural variability in near-term climate predictions. Adv. Meteorol. 2010, 657318 (2010).

    Article  Google Scholar 

  23. Ammann, C. M. & Naveau, P. A statistical volcanic forcing scenario generator for climate simulations. J. Geophys. Res. 115, D05107 (2010).

    Google Scholar 

  24. Mitchell, D. et al. Realizing the impacts of a 1.5 °C warmer world. Nat. Clim. Change 6, 735–737 (2016).

    Article  Google Scholar 

  25. Self, S. & Gertisser, R. Tying down eruption risk. Nat. Geosci. 8, 248–250 (2015).

    Article  CAS  Google Scholar 

  26. Tuel, A., Naveau, P. & Ammann, C. M. Skillful prediction of multidecadal variations in volcanic forcing. Geophys. Res. Lett. 44, 2868–2874 (2017).

    Article  Google Scholar 

  27. Ammann, C. M., Meehl, G. A., Washington, W. M. & Zender, C. S. A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett. 30, 1657 (2003).

    Article  Google Scholar 

  28. Gregory, J. M. Long-term effect of volcanic forcing on ocean heat content. Geophys. Res. Lett. 37, 045507 (2010).

    Article  Google Scholar 

  29. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article  Google Scholar 

  30. Zanchettin, D. et al. The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geosci. Model Dev. 9, 2701–2719 (2016).

    Article  CAS  Google Scholar 

  31. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7, 185–189 (2014).

    Article  CAS  Google Scholar 

  32. Gao, C., Oman, L., Robock, A. & Stenchikov, G. L. Atmospheric volcanic loading derived from bipolar ice cores: accounting for the spatial distribution of volcanic deposition. J. Geophys. Res. 112, D09109 (2007).

    Google Scholar 

  33. Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013).

    Article  Google Scholar 

  34. Sigl, M. et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J. Geophys. Res. 118, 1151–1169 (2013).

    CAS  Google Scholar 

  35. Sigl, M. et al. Insights from Antarctica on volcanic forcing during the Common Era. Nat. Clim. Change 4, 6–10 (2014).

    Article  Google Scholar 

  36. Vidal, C. M. et al. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Sci. Rep. 6, 34868 (2016).

    Article  CAS  Google Scholar 

  37. Wild, M. et al. From dimming to brightening: decadal changes in Solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    Article  CAS  Google Scholar 

  38. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).

    Article  CAS  Google Scholar 

  39. Iversen, T. et al. The Norwegian Earth System Model, NorESM1-M—Part 2: climate response and scenario projections. Geosci. Model Dev. 6, 389–415 (2013).

    Article  Google Scholar 

  40. Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).

    Article  Google Scholar 

  41. Pausata, F. S. R., Grini, A., Caballero, R., Hannachi, A. & Seland, Ø. High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size. Tellus B 67, 26728 (2015).

    Article  Google Scholar 

  42. Pausata, F. S. R., Chafik, L., Caballero, R. & Battisti, D. S. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl Acad. Sci. USA 112, 13784–13788 (2015).

    Article  CAS  Google Scholar 

  43. Outten, S., Thorne, P., Bethke, I. & Seland, Ø. Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth System Model ensembles. J. Geophys. Res. 120, 8575–8596 (2015).

    Google Scholar 

  44. Thorne, P., Outten, S., Bethke, I. & Seland, Ø. Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observational estimates. J. Geophys. Res. 120, 8597–8620 (2015).

    Google Scholar 

  45. Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).

    Article  Google Scholar 

  46. Carlstein, E. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann. Stat. 14, 1171–1179 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Mitchell, A. Kirkevåg, M. Toohey and D. Zanchettin for providing valuable input. This study was supported by the Bjerknes Centre for Climate Research, Research Council of Norway (229774) and UNINETT Sigma2 (nn9039k, ns9039k).

Author information

Authors and Affiliations

Authors

Contributions

S.O., P.T. and I.B. developed the stochastic forcing model. S.W. and M.S. helped with the utilization and interpretation of the ice-core reconstructions. I.B., P.T., S.O. and E.H. conceived and designed the simulation experiments. E.H. performed the ToE analysis. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Ingo Bethke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3105 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bethke, I., Outten, S., Otterå, O. et al. Potential volcanic impacts on future climate variability. Nature Clim Change 7, 799–805 (2017). https://doi.org/10.1038/nclimate3394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing