Lightning as a major driver of recent large fire years in North American boreal forests

Abstract

Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ignition locations and burned area of two recent years with large burned area in boreal North America.
Figure 2: Ignitions and burned area were considerably higher than the longer-term mean near the treeline in the Northwest Territories in 2014 and Interior Alaska in 2015.
Figure 3: Changes in ignition, fire size and burned area between 1975 and 2015.
Figure 4: A cascade from lightning ignitions to burned area and carbon emissions.
Figure 5: A positive feedback loop between climate, lightning, fires and northward forest expansion partly mitigated by a negative fuel feedback.

References

  1. 1

    Kuusela, K. The Dynamics of Boreal Coniferous Forests (Finnish National Fund for Research and Development, 1992).

    Google Scholar 

  2. 2

    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).

    CAS  Google Scholar 

  3. 3

    Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Article  CAS  Google Scholar 

  4. 4

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).

    Google Scholar 

  5. 5

    Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).

    Article  Google Scholar 

  6. 6

    Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15, 578–600 (2009).

    Article  Google Scholar 

  7. 7

    Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. Climatic Change 72, 1–16 (2005).

    Article  CAS  Google Scholar 

  8. 8

    Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606–617 (2016).

    Article  Google Scholar 

  9. 9

    French, N. H. F. et al. Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildl. Fire 24, 1045–1061 (2015).

    Article  Google Scholar 

  10. 10

    Hu, F. S. et al. Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J. Geophys. Res. 115, G04002 (2010).

    Article  Google Scholar 

  11. 11

    Venevsky, S., Thonicke, K., Sitch, S. & Cramer, W. Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Glob. Change Biol. 8, 984–998 (2002).

    Article  Google Scholar 

  12. 12

    Kasischke, E., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildl. Fire 11, 131–144 (2002).

    Article  Google Scholar 

  13. 13

    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 108, 8149 (2002).

    Article  Google Scholar 

  14. 14

    Dissing, D. & Verbyla, D. L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33, 770–782 (2003).

    Article  Google Scholar 

  15. 15

    Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).

    Article  Google Scholar 

  16. 16

    Héon, J., Arseneault, D. & Parisien, M.-A. Resistance of the boreal forest to high burn rates. Proc. Natl Acad. Sci. USA 111, 13888–13893 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl Acad. Sci. USA 110, 13055–13060 (2013).

    Article  Google Scholar 

  18. 18

    Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).

    Article  Google Scholar 

  19. 19

    Parks, S. A., Holsinger, L. M., Miller, C. & Nelson, C. R. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecol. Appl. 25, 1478–1492 (2015).

    Article  Google Scholar 

  20. 20

    Krawchuk, M. A. & Cumming, S. G. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change. Ecol. Appl. 21, 122–136 (2011).

    Article  Google Scholar 

  21. 21

    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    Article  CAS  Google Scholar 

  22. 22

    Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. 119, 312–322 (2014).

    Article  Google Scholar 

  23. 23

    Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).

    Article  CAS  Google Scholar 

  24. 24

    Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).

    Article  CAS  Google Scholar 

  25. 25

    Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).

    Article  Google Scholar 

  26. 26

    Partain, J. L. et al. An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015. Bull. Am. Meteorol. Soc. 97, S14–S18 (2016).

    Article  Google Scholar 

  27. 27

    Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).

    Google Scholar 

  28. 28

    Liston, G. E. & Hiemstra, C. A. The changing cryosphere: pan-Arctic snow trends (1979–2009). J. Clim. 24, 5691–5712 (2011).

    Article  Google Scholar 

  29. 29

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  CAS  Google Scholar 

  30. 30

    Magi, B. I. Global lightning parameterization from CMIP5 climate model output. J. Atmos. Ocean. Technol. 32, 434–452 (2015).

    Article  Google Scholar 

  31. 31

    Rogers, B. M., Randerson, J. T. & Bonan, G. B. High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences 10, 699–718 (2013).

    Article  Google Scholar 

  32. 32

    MacDonald, G. M. et al. Holocene treeline history and climate change across Northern Eurasia. Quat. Res. 53, 302–311 (2000).

    Article  Google Scholar 

  33. 33

    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    Article  Google Scholar 

  34. 34

    Pielke, R. A. & Vidale, P. L. The boreal forest and the polar front. J. Geophys. Res. 100, 25755–25758 (1995).

    Article  Google Scholar 

  35. 35

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).

    Article  CAS  Google Scholar 

  36. 36

    Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).

    Article  Google Scholar 

  37. 37

    Hewitt, R. E. et al. Getting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in Alaska. Landsc. Ecol. 31, 895–911 (2015).

    Article  Google Scholar 

  38. 38

    Payette, S. & Filion, L. White spruce expansion at the tree line and recent climatic change. Can. J. For. Res. 15, 241–251 (1985).

    Article  Google Scholar 

  39. 39

    Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).

    Article  Google Scholar 

  40. 40

    Euskirchen, E. S., McGuire, A. D., Chapin, F. S., Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).

    Article  CAS  Google Scholar 

  41. 41

    Krawchuk, M. A., Cumming, S. G., Flannigan, M. D. & Wein, R. W. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology 87, 458–468 (2006).

    Article  CAS  Google Scholar 

  42. 42

    French, N. H. F., Whitley, M. A. & Jenkins, L. K. Fire disturbance effects on land surface albedo in Alaskan tundra. J. Geophys. Res. 121, 841–854 (2016).

    Article  Google Scholar 

  43. 43

    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).

    Article  CAS  Google Scholar 

  44. 44

    Mouteva, G. O. et al. Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Glob. Biogeochem. Cycles 29, 1977–2000 (2015).

    Article  CAS  Google Scholar 

  45. 45

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 118, 5380–5552 (2013).

    CAS  Google Scholar 

  46. 46

    Brown, D. R. N. et al. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. 120, 1619–1637 (2015).

    Article  Google Scholar 

  47. 47

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  48. 48

    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article  Google Scholar 

  49. 49

    Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).

    Article  CAS  Google Scholar 

  50. 50

    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    Article  Google Scholar 

  51. 51

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  52. 52

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  53. 53

    Fowler, H. J., Blenkinsop, S. & Tebaldi, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 27, 1547–1578 (2007).

    Article  Google Scholar 

  54. 54

    Kochtubajda, B., Stewart, R. E., Gyakum, J. R. & Flannigan, M. D. Summer convection and lightning over the Mackenzie river basin and their impacts during 1994 and 1995. Atmos. Ocean 40, 199–220 (2002).

    Article  Google Scholar 

  55. 55

    Kochtubajda, B. et al. Lightning and fires in the Northwest Territories and responses to future climate change. Arctic 59, 211–221 (2006).

    Google Scholar 

  56. 56

    Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).

    Article  Google Scholar 

  57. 57

    Burrows, W. R. et al. Lightning occurrence patterns over Canada and adjacent United States from lightning detection network observations. Atmos. Ocean 40, 59–80 (2002).

    Article  Google Scholar 

  58. 58

    Reap, R. Climatological characteristics and objective prediction of thunderstorms over Alaska. Weather Forecast. 6, 309–319 (1991).

    Article  Google Scholar 

  59. 59

    Nowacki, G. & Brock, T. Ecoregions and Subregions of Alaska, EcoMap Version 2.0 (map) (USDA Forest Service, 1995).

  60. 60

    Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135–136, 404–414 (2014).

    Article  Google Scholar 

  61. 61

    Veraverbeke, S. et al. Mapping the daily progression of large wildland fires using MODIS active fire data. Int. J. Wildl. Fire 23, 655–667 (2014).

    Article  Google Scholar 

  62. 62

    López García, M. J. & Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 6, 31–37 (1991).

    Article  Google Scholar 

  63. 63

    Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. For. Res. 44, 521–532 (2014).

    Article  Google Scholar 

  64. 64

    Prichard, S. J. et al. Evaluation of the CONSUME and FOFEM fuel consumption models in pine and mixed hardwood forests of the eastern United States. Can. J. For. Res. 44, 784–795 (2014).

    Article  Google Scholar 

  65. 65

    Van Wagner, C. E. Development and Structure of the Canadian Forest Fire Weather Index System (Environment Canada, Forestry Service, 1987).

    Google Scholar 

  66. 66

    Kasischke, E. S. et al. Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks. J. Geophys. Res. 116, G04003 (2011).

    Article  CAS  Google Scholar 

  67. 67

    Hansen, M. C. et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact. 7, 1–15 (2003).

    Article  Google Scholar 

  68. 68

    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Article  Google Scholar 

  69. 69

    Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P. & Sohlberg, R. A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2, 291–308 (2009).

    Article  Google Scholar 

  70. 70

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

    Google Scholar 

  71. 71

    Price, C. & Rind, D. The impact of a 2 × CO2 climate on lightning-caused fires. J. Clim. 7, 1484–1494 (1994).

    Article  Google Scholar 

  72. 72

    Peterson, D., Wang, J., Ichoku, C. & Remer, L. A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos. Chem. Phys. 10, 6873–6888 (2010).

    Article  CAS  Google Scholar 

  73. 73

    Veraverbeke, S. et al. ABoVE: Ignitions, Burned Area and Emissions of Fires in AK, YT, and NWT, 2001–2015http://dx.doi.org/10.3334/ORNLDAAC/1341 (2017).

Download references

Acknowledgements

This work was funded by the National Aeronautics and Space Administration (NASA) Carbon in Arctic Reservoirs Experiment (CARVE) and the Arctic-Boreal Vulnerability Experiment (ABoVE, NNX15AU56A). We acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, which is responsible for the Climate Model Intercomparison Project, and we thank the climate modelling groups for producing and making available their model output. We wish to thank Environment and Climate Change Canada for their generous permission to use Canadian Lightning Detection Network data. We thank NASA for providing access to the Optical Transient Detector gridded lightning climatology data. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. S.V. would like to thank C. Verstraete for discussions on early ideas of this paper and support.

Author information

Affiliations

Authors

Contributions

S.V. and J.T.R. designed the research. S.V. performed the analysis of contemporary climate and fire time series, and developed the future projections. B.M.R. developed the future fuel feedback estimates. R.R.J. contributed to the interpretation of the Alaskan lightning data. S.V. drafted the paper. All authors participated in manuscript editing.

Corresponding author

Correspondence to Sander Veraverbeke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1199 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veraverbeke, S., Rogers, B., Goulden, M. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Clim Change 7, 529–534 (2017). https://doi.org/10.1038/nclimate3329

Download citation

Further reading