Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Migration induced by sea-level rise could reshape the US population landscape

Abstract

Many sea-level rise (SLR) assessments focus on populations presently inhabiting vulnerable coastal communities1,2,3, but to date no studies have attempted to model the destinations of these potentially displaced persons. With millions of potential future migrants in heavily populated coastal communities, SLR scholarship focusing solely on coastal communities characterizes SLR as primarily a coastal issue, obscuring the potential impacts in landlocked communities created by SLR-induced displacement. Here I address this issue by merging projected populations at risk of SLR1 with migration systems simulations to project future destinations of SLR migrants in the United States. I find that unmitigated SLR is expected to reshape the US population distribution, potentially stressing landlocked areas unprepared to accommodate this wave of coastal migrants—even after accounting for potential adaptation. These results provide the first glimpse of how climate change will reshape future population distributions and establish a new foundation for modelling potential migration destinations from climate stressors in an era of global environmental change.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Estimated SLR net migrants (in-migrants minus out-migrants) for counties and core based statistical areas under the 1.8 m scenario and no adaptation.
Figure 2: Net change in population due to sea-level rise under the 1.8 m scenario and no adaptation.
Figure 3: Circular plot of bi-lateral SLR migration flows for US States under the 1.8 m scenario and no adaptation.

References

  1. Hauer, M. E., Evans, J. M. & Mishra, D. R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Change 6, 691–695 (2016).

    Article  Google Scholar 

  2. Strauss, B. H., Kulp, S. & Levermann, A. Carbon choices determine US cities committed to futures below sea level. Proc. Natl Acad. Sci. USA 112, 13508–13513 (2015).

    Article  CAS  Google Scholar 

  3. Lelieveld, J. et al. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change 137, 245–260 (2016).

    Article  Google Scholar 

  4. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  CAS  Google Scholar 

  5. Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009).

    Article  CAS  Google Scholar 

  6. Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

    Article  CAS  Google Scholar 

  7. IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  8. Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Phil. Trans. R. Soc. A 369, 161–181 (2011).

    Article  Google Scholar 

  9. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  CAS  Google Scholar 

  10. Black, R., Bennett, S. R. G., Thomas, S. M. & Beddington, J. R. Migration as adaptation. Nature 478, 447–449 (2011).

    Article  CAS  Google Scholar 

  11. Döös, B. R. Can large-scale environmental migrations be predicted? Glob. Environ. Change 7, 41–61 (1997).

    Article  Google Scholar 

  12. Mueller, V., Gray, C. & Kosec, K. Heat stress increases long-term human migration in rural Pakistan. Nat. Clim. Change 4, 182–185 (2014).

    Article  CAS  Google Scholar 

  13. Hugo, G. Future demographic change and its interactions with migration and climate change. Glob. Environ. Change 215, 521–533 (2011).

    Google Scholar 

  14. Ben, M. & Anders, L. Loss of cultural world heritage and currently inhabited places to sea-level rise. Environ. Res. Lett. 9, 034001 (2014).

    Article  Google Scholar 

  15. Curtis, K. & Schneider, A. Understanding the demographic implications of climate change: estimates of localized population predictions under future scenarios of sea-level rise. Popul. Environ. 33, 28–54 (2011).

    Article  Google Scholar 

  16. Willekens, F., Massey, D., Raymer, J. & Beauchemin, C. International migration under the microscope. Science 352, 897–899 (2016).

    Article  CAS  Google Scholar 

  17. Hugo, G. Migration, Development and Environment (International Organization for Migration Geneva, 2008).

    Book  Google Scholar 

  18. McLeman, R. A. Climate and Human Migration: Past Experiences, Future Challenges Report No. 1107022657 (Cambridge Univ. Press, 2013).

    Book  Google Scholar 

  19. Gutmann, M. P. & Field, V. Katrina in historical context: environment and migration in the US. Popul. Environ. 31, 3–19 (2010).

    Article  Google Scholar 

  20. Collins, S. L. et al. An integrated conceptual framework for long-term social-ecological research. Front. Ecol. Environ. 9, 351–357 (2010).

    Article  Google Scholar 

  21. Hunter, L. M., Murray, S. & Riosmena, F. Rainfall patterns and US migration from rural Mexico. Int. Migr. Rev. 47, 874–909 (2013).

    Article  Google Scholar 

  22. Thiede, B. & Brown, D. Hurricane Katrina: who stayed and why? Popul. Res. Policy Rev. 32, 803–824 (2013).

    Article  Google Scholar 

  23. Entwisle, B. et al. Climate shocks and migration: an agent-based modeling approach. Popul. Environ. 38, 47–71 (2016).

    Article  Google Scholar 

  24. Arenstam Gibbons, S. J. & Nicholls, R. J. Island abandonment and sea-level rise: an historical analog from the Chesapeake Bay, USA. Glob. Environ. Change 16, 40–47 (2006).

    Article  Google Scholar 

  25. Findlay, A. M. Migrant destinations in an era of environmental change. Glob. Environ. Change 21, S50–S58 (2011).

    Article  Google Scholar 

  26. SOI Tax Stats—County-to-County Migration Data Files (IRS, 2016); http://www.irs.gov/uac/soi-tax-stats-county-to-county-migration-data-files

  27. Harvey, A. C. Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge Univ. Press, 1990).

    Book  Google Scholar 

  28. Brown, S. et al. Shifting perspectives on coastal impacts and adaptation. Nat. Clim. Change 4, 752–755 (2014).

    Article  Google Scholar 

  29. Neumann, J. E. et al. Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy. Climatic Change 129, 337–349 (2015).

    Article  Google Scholar 

  30. Georgeson, L., Maslin, M., Poessinouw, M. & Howard, S. Adaptation responses to climate change differ between global megacities. Nat. Clim. Change 6, 584–588 (2016).

    Article  Google Scholar 

  31. Adger, W. N., Arnell, N. W. & Tompkins, E. L. Successful adaptation to climate change across scales. Glob. Environ. Change 15, 77–86 (2005).

    Article  Google Scholar 

  32. Black, R., Arnell, N. W., Adger, W. N., Thomas, D. & Geddes, A. Migration, immobility and displacement outcomes following extreme events. Environ. Sci. Policy 27, S32–S43 (2013).

    Article  Google Scholar 

  33. Smith, C., Kniveton, D. R., Wood, S. & Black, R. Climate Change and Migration: A Modelling Approach. Adv. Glob. Change Res. 43, 179–201 (2011).

    Article  Google Scholar 

  34. Black, R., Kniveton, D. & Schmidt-Verkerk, K. Migration and climate change: towards an integrated assessment of sensitivity. Environ. Plann. A 43, 431–450 (2011).

    Article  Google Scholar 

  35. Black, R. et al. The effect of environmental change on human migration. Glob. Environ. Change 21, S3–S11 (2011).

    Article  Google Scholar 

  36. Haer, T., Botzen, W. J. W., de Moel, H. & Aerts, J. C. J. H. Integrating household risk mitigation behavior in flood risk analysis: an agent-based model approach. Risk Anal. http://dx.doi.org/10.1111/risa.12740 (2016).

  37. Kocornik-Mina, A., McDermott, T. K., Michaels, G. & Rauch, F. Flooded Cities (Centre for Economic Performance, LSE, 2016).

    Google Scholar 

  38. Hammer, R. B., Stewart, S. I., Winkler, R. L., Radeloff, V. C. & Voss, P. R. Characterizing dynamic spatial and temporal residential density patterns from 1940 to 1990 across the North Central United States. Landscape Urban Plan. 69, 183–199 (2004).

    Article  Google Scholar 

  39. Hauer, M. E., Evans, J. M. & Alexander, C. R. Sea-level rise and sub-county population projections in coastal Georgia. Popul. Environ. 37, 44–62 (2015).

    Article  Google Scholar 

  40. Rogers, A., Little, J. & Raymer, J. The Indirect Estimation of Migration: Methods for Dealing with Irregular, Inadequate, and Missing Data Vol. 26 (Springer Science & Business Media, 2010).

    Book  Google Scholar 

  41. Engels, R. A. & Healy, M. K. Measuring interstate migration flows—an origin-destination network based on Internal Revenue Service records. Environ. Plann. A 13, 1345–1360 (1981).

    Article  Google Scholar 

  42. Franklin, R. S. & Plane, D. A. Pandora’s box: the potential and peril of migration data from the American Community Survey. Intl Reg. Sci. Rev. 29, 231–246 (2006).

    Article  Google Scholar 

  43. Lichter, D. T. & Brown, D. L. Rural America in an urban society: changing spatial and social boundaries. Annu. Rev. Sociol. 37, 565–592 (2011).

    Article  Google Scholar 

  44. Jones, B. & O’Neill, B. C. Historically grounded spatial population projections for the continental United States. Environ. Res. Lett. 8, 044021 (2013).

    Article  Google Scholar 

  45. DeWaard, J., Kim, K. & Raymer, J. Migration systems in Europe: evidence from harmonized flow data. Demography 49, 1307–1333 (2012).

    Article  Google Scholar 

  46. Fawcett, J. T. Networks, linkages, and migration systems. Int. Migr. Rev. 23, 671–680 (1989).

    Article  CAS  Google Scholar 

  47. Fussell, E., Curtis, K. J. & DeWaard, J. Recovery migration to the City of New Orleans after Hurricane Katrina: a migration systems approach. Popul. Environ. 35, 305–322 (2014).

    Article  Google Scholar 

  48. Massey, D. S. et al. An evaluation of international migration theory–the North-American case. Popul. Dev. Rev. 20, 699–751 (1994).

    Article  Google Scholar 

  49. Lee, E. S. Theory of Migration. Demography 3, 47–57 (1966).

    Article  Google Scholar 

  50. Pandit, K. Cohort and period effects in US migration: how demographic and economic cycles influence the migration schedule. Ann. Assoc. Am. Geograph. 89, 439–450 (1997).

    Article  Google Scholar 

  51. Haug, S. Migration networks and migration decision-making. J. Ethn. Migr. Stud. 34, 585–605 (2008).

    Article  Google Scholar 

  52. Schultz, J. & Elliott, J. R. Natural disasters and local demographic change in the United States. Popul. Environ. 34, 293–312 (2013).

    Article  Google Scholar 

  53. Gray, C. & Bilsborrow, R. Environmental influences on human migration in rural Ecuador. Demography 50, 1217–1241 (2013).

    Article  Google Scholar 

  54. Harrison, J. & West, M. Bayesian Forecasting Dynamic Models (Springer, 1999).

    Google Scholar 

  55. Reuveny, R. & Moore, W. H. Does environmental degradation influence migration? Emigration to developed countries in the late 1980s and 1990s. Soc. Sci. Quart. 90, 461–479 (2009).

    Article  Google Scholar 

  56. Feng, S. Z., Krueger, A. B. & Oppenheimer, M. Linkages among climate change, crop yields and Mexico–US cross-border migration. Proc. Natl Acad. Sci. USA 107, 14257–14262 (2010).

    Article  CAS  Google Scholar 

  57. Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).

    Article  CAS  Google Scholar 

  58. Tayman, J., Smith, S. & Lin, J. Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models. Popul. Res. Policy Rev. 26, 347–369 (2007).

    Article  Google Scholar 

  59. Swanson, D. A. & Beck, D. M. A new short-term county population projection method. J. Econ. Soc. Meas. 20, 25–50 (1994).

    Article  Google Scholar 

  60. Swanson, D. A. & Tayman, J. Emerging Techniques in Applied Demography 93–117 (Springer, 2015).

    Google Scholar 

  61. Hauer, M. Sea Level Rise Induced Migration could Reshape the Population Landscape (Inter-university Consortium of Political and Social Research, 2017); http://dx.doi.org/10.3886/E100413V3

Download references

Acknowledgements

I am grateful for the constructive comments from J. M. Byars, S. Holloway, J. M. Shepherd, J. Evans, J. S. Pippin and J. Véron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew E. Hauer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 550 kb)

Supplementary Information

Supplementary Table 1 (XLSX 294 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauer, M. Migration induced by sea-level rise could reshape the US population landscape. Nature Clim Change 7, 321–325 (2017). https://doi.org/10.1038/nclimate3271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing