Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The contribution of solar brightening to the US maize yield trend

Abstract

Predictions of crop yield under future climate change are predicated on historical yield trends1,2,3, hence it is important to identify the contributors to historical yield gains and their potential for continued increase. The large gains in maize yield in the US Corn Belt have been attributed to agricultural technologies4, ignoring the potential contribution of solar brightening (decadal-scale increases in incident solar radiation) reported for much of the globe since the mid-1980s. In this study, using a novel biophysical/empirical approach, we show that solar brightening contributed approximately 27% of the US Corn Belt yield trend from 1984 to 2013. Accumulated solar brightening during the post-flowering phase of development of maize increased during the past three decades, causing the yield increase that previously had been attributed to agricultural technology. Several factors are believed to cause solar brightening, but their relative importance and future outlook are unknown5,6,7,8,9, making prediction of continued solar brightening and its future contribution to yield gain uncertain. Consequently, results of this study call into question the implicit use of historical yield trends in predicting yields under future climate change scenarios.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Accumulated solar brightening during the grain-filling phase of maize across ten US Corn Belt states between 1984 and 2013.
Figure 2: Increase in county yields between to 1984 and 2013 that is attributable to solar brightening across ten US Corn Belt states (counties with >10,000 A of harvested grain corn).

References

  1. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    CAS  Article  Google Scholar 

  2. Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).

    Article  Google Scholar 

  3. Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Change Biol. 19, 937–947 (2013).

    Article  Google Scholar 

  4. Fuglie, K. O., Macdonald, J. M. & Ball, E. Productivity Growth in US Agriculture (USDA Economic Research Service, 2007); http://dx.doi.org/10.2139/ssrn.1084980

  5. Hinkelman, L. M., Stackhouse, P. W. Jr, Wielicki, B. A., Zhang, T. & Wilson, S. R. Surface insolation trends from satellite and ground measurements: comparisons and challenges. J. Geophys. Res. 114, D00D20 (2009).

    Article  Google Scholar 

  6. Wild, M. Global dimming and brightening: a review. J. Geophys. Res. 114, D00D16 (2009).

    Google Scholar 

  7. Ruckstuhl, C. et al. Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophys. Res. Lett. 35, L12708 (2008).

    Article  Google Scholar 

  8. Streets, D. G. et al. Anthropogenic and natural contributions to regional trends in aerosol optical depth 1980–2006. J. Geophys. Res. 114, D00D18 (2009).

    Article  Google Scholar 

  9. Jiang, J. H. et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA ‘A-Train’ satellite observations. J. Geophys. Res. 117, D14105 (2012).

    Google Scholar 

  10. Duvick, D. N. Contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

    Article  Google Scholar 

  11. Tollenaar, M. & Lee, E. A. Strategies for enhancing grain yield in maize. Plant Breed. Rev. 34, 37–82 (2011).

    CAS  Google Scholar 

  12. Kunkel, K. et al. NOAA Technical Report NESDIS 142-3 Regional Climate Trends and Scenarios for the US National Climate Assessment NOAA Technical Report NESDIS 142-3 (2013).

  13. Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Article  Google Scholar 

  14. Dlugokencky, E. & Tans, P. Trends in Atmospheric Carbon Dioxide (NOAA/ESRL, 2017); www.esrl.noaa.gov/gmd/ccgg/trends

  15. Leakey, A. D. B. et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 140, 779–790 (2006).

    CAS  Article  Google Scholar 

  16. McGrath, J. M. & Lobell, D. B. An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Glob. Change Biol. 17, 2689–2696 (2011).

    Article  Google Scholar 

  17. Manderscheid, R., Erbs, M. & Weigel, H. J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur. J. Agron. 52, 11–21 (2014).

    CAS  Article  Google Scholar 

  18. Pinker, R. T., Zhang, B. & Dutton, E. G. Do satellites detect trends in surface solar radiation? Science 308, 850–854 (2005).

    CAS  Article  Google Scholar 

  19. Wild, M. et al. Global dimming and brightening: an update beyond 2000. J. Geophys. Res. 114, D00D13 (2009).

    Google Scholar 

  20. Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    CAS  Article  Google Scholar 

  21. Long, C. N. et al. Significant decadal brightening of downwelling shortwave in the continental United States. J. Geophys. Res. 114, D00D06 (2009).

    Article  Google Scholar 

  22. Hatzianastassiou, N. et al. Recent regional surface solar radiation dimming and brightening patterns: inter-hemispherical asymmetry and a dimming in the Southern Hemisphere. Atmos. Sci. Lett. 13, 43–48 (2012).

    Article  Google Scholar 

  23. Augustine, J. A. & Dutton, E. G. Variability of the surface radiation budget over the United States from 1996 through 2011 from high-quality measurements. J. Geophys. Res. 118, 43–53 (2013).

    Article  Google Scholar 

  24. Dutton, E. G. et al. Decadal variations in surface solar irradiance as observed in a globally remote network. J. Geophys. Res. 111, D19101 (2006).

    Article  Google Scholar 

  25. Monteith, J. L. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B. 281, 277–294 (1977).

    Article  Google Scholar 

  26. Stackhouse, P. W. Jr, Westberg, D., Hoell, J. M., Chandler, W. S. & Zang, T. Prediction Of Worldwide Energy Resource (POWER) Agroclimatology Methodology: 1o × 1o Spatial Data (2015); http://power.larc.nasa.gov/documents/Agroclimatology_Methodology.pdf

  27. White, J. W., Hoogenboom, G., Wilkens, P. W., Stackhouse, P. W. & Hoel, J. M. Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States. Agron. J. 103, 1242–1251 (2011).

    Article  Google Scholar 

  28. Cardwell, V. B. Fifty years of Minnesota corn production: sources of yield increase. Agron. J. 74, 984–990 (1982).

    Article  Google Scholar 

  29. Edgerton, M. D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).

    CAS  Article  Google Scholar 

  30. Castleberry, R. M., Crum, C. W. & Krull, C. F. Genetic yield improvement of US maize cultivars under varying fertility and climatic environments. Crop Sci. 24, 33–36 (1984).

    Article  Google Scholar 

  31. Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc. 93, 27–37 (2012).

    Article  Google Scholar 

  32. Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806 (2009).

    Google Scholar 

  33. Daynard, T. B. & Duncan, W. G. The black layer and grain maturity in corn. Crop Sci. 9, 473–476 (1969).

    Article  Google Scholar 

  34. Van Wart, J., Grassini, P. & Cassman, K. G. Impact of derived global weather data on simulated crop yields. Glob. Change Biol. 19, 3822–3834 (2013).

    Article  Google Scholar 

  35. Shaw, R. H. Agrometeorology Maize (Corn) Crop Vol. 481, 119–134 (World Meteorological Organization, 1977).

    Google Scholar 

  36. Ker, A. A. P. & Goodwin, B. B. K. Nonparametric estimation of crop insurance rates revisited. Am. J. Agric. Econ. 82, 463–478 (2000).

    Article  Google Scholar 

  37. Atwood, J., Shaik, S. & Watts, M. Are crop yields normally distributed? A reexamination. Am. J. Agric. Econ. 85, 888–891 (2003).

    Article  Google Scholar 

  38. Miranda, M. J. & Glauber, J. W. Systemic risk, reinsurance, and the failure of crop insurance markets. Am. J. Agric. Econ. 79, 206–215 (1997).

    Article  Google Scholar 

  39. Tollenaar, M., Aguilera, A. & Nissanka, S. P. Grain yield is reduced more by weed interference in an old than in a new maize hybrid. Agron. J. 89, 239–246 (1997).

    Article  Google Scholar 

  40. Rajcan, I. & Tollenaar, M. Source:sink ratio and leaf senescence in maize: II. Nitrogen metabolism during grain filling. F. Crop. Res. 60, 255–265 (1999).

    Article  Google Scholar 

  41. Tollenaar, M., Ahmadzadeh, A. & Lee, E. A. Physiological basis of heterosis for grain yield in maize. Crop Sci. 44, 2086–2094 (2004).

    Article  Google Scholar 

  42. Ciampitti, I. A. et al. Physiological dynamics of maize nitrogen uptake and partitioning in response to plant density and N stress factors: I. Vegetative phase. Crop Sci. 53, 2105–2119 (2013).

    CAS  Article  Google Scholar 

  43. Tollenaar, M., Nissanka, S. P., Aguilera, A., Weise, S. F. & Swanton, C. J. Effect of weed interference and soil-nitrogen on 4 maize hybrids. Agron. J. 86, 596–601 (1994).

    Article  Google Scholar 

  44. Tollenaar, M., Dibo, A. A., Aguilera, A., Weise, S. F. & Swanton, C. J. Effect of crop density on weed interference in maize. Agron. J. 86, 591–594 (1994).

    Article  Google Scholar 

  45. Mueller, S. M. & Vyn, T. J. Maize plant resilience to N stress and post-silking N capacity changes over time: a review. Front. Plant Sci. 7, 53 (2016).

    Article  Google Scholar 

  46. Evans, L. T. Crop Evolution, Adaptation and Yield (Cambridge Univ. Press, 1993).

    Google Scholar 

  47. Knowles, J. & Frederick, C. merTools: Tools for Analyzing Mixed Effect Regression Models (The Comprehensive R Archive Network (CRAN), 2016); at https://cran.r-project.org/package=merTools

  48. Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

    Google Scholar 

  49. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

Download references

Acknowledgements

We are grateful to all our colleagues participating in the AgMIP Maize Model Improvement group who contributed to the quantification of maize phenology that inspired the current study. Special thanks to W.B. Leeds (The Climate Corp, USA) for filtering and interpolating public weather data sets (POWER and GHCN data sets) for use in the current study.

Author information

Authors and Affiliations

Authors

Contributions

S.K. conceived this study, M.T. developed the quantitative framework to estimate yield from solar brightening, and both drafted the manuscript. J.F. designed the statistical analyses. P.T. analysed the data. P.W.S. contributed to the quantification of solar brightening in the US Midwest. All contributed to the writing of the manuscript.

Corresponding author

Correspondence to Saratha Kumudini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 309 kb)

Supplementary Information

Supplementary Information (XLSX 5477 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tollenaar, M., Fridgen, J., Tyagi, P. et al. The contribution of solar brightening to the US maize yield trend. Nature Clim Change 7, 275–278 (2017). https://doi.org/10.1038/nclimate3234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3234

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing