Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regional dry-season climate changes due to three decades of Amazonian deforestation

Abstract

More than 20% of the Amazon rainforest has been cleared in the past three decades1, triggering important hydroclimatic changes1,2,3,4,5,6. Small-scale (a few kilometres) deforestation in the 1980s has caused thermally triggered atmospheric circulations7 that increase regional cloudiness8,9,10 and precipitation frequency8. However, these circulations are predicted to diminish as deforestation increases11,12,13. Here we use multi-decadal satellite records14,15 and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared with the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately ±25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing that large-scale climate variability plays a negligible role16. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry-season hydroclimate. Our study illustrates the strong scale sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally to a dynamically driven hydroclimatic regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Emergence of the southeast–northwest cloud and precipitation ‘dipoles’ with increasing deforestation in Rondônia.
Figure 2: Time evolution of cloud and precipitation dipole moment vectors showing increasing southeast–northwest redistribution with increasing deforestation.
Figure 3: Emergence of the dipole in simulated data between the 1980s and 2000s and the causal physical mechanism behind the dipole in the present time.
Figure 4: Emergence of the cloud and precipitation ‘dipoles’ over three decades as captured by observed and simulated data.
Figure 5: Transition in the dominant convective regime with increasing scales of deforestation.

References

  1. 1

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L. Amazonian Deforestation and Climate (John Wiley, 1996).

    Google Scholar 

  3. 3

    von Randow, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78, 5–26 (2004).

    Article  Google Scholar 

  4. 4

    D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).

    Article  Google Scholar 

  5. 5

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2014).

    Article  Google Scholar 

  6. 6

    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Roy, S. B. & Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. 107, LBA 4-1–LBA 4-12 (2002).

    Article  Google Scholar 

  8. 8

    Chagnon, F. J. F. & Bras, R. L. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32, L13703 (2005).

    Article  Google Scholar 

  9. 9

    Negri, A. J., Adler, R. F., Xu, L. M. & Surratt, J. The impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).

    Article  Google Scholar 

  10. 10

    Wang, J. F. et al. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl Acad. Sci. USA 106, 3670–3674 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Avissar, R. & Schmidt, T. An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci. 55, 2666–2689 (1998).

    Article  Google Scholar 

  12. 12

    Patton, E. G., Sullivan, P. P. & Moeng, C. H. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci. 62, 2078–2097 (2005).

    Article  Google Scholar 

  13. 13

    Khanna, J. & Medvigy, D. Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondônia, Brazil. J. Geophys. Res. 119, 13067–13078 (2014).

    Google Scholar 

  14. 14

    Knapp, K. R. et al. Globally gridded satellite observations for climate studies. Bull. Am. Meteorol. Soc. 92, 893–907 (2011).

    Article  Google Scholar 

  15. 15

    Ashouri, H. et al. PERSIANN-CDR Daily precipitation Climate Data Record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 96, 69–83 (2015).

    Article  Google Scholar 

  16. 16

    Fernandes, K., Giannini, A., Verchot, L., Baethgen, W. & Pinedo-Vasquez, M. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys. Res. Lett. 42, 6793–6801 (2015).

    Article  Google Scholar 

  17. 17

    Rossow, W. B. & Garder, L. C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Clim. 6, 2341–2369 (1993).

    Article  Google Scholar 

  18. 18

    Roberts, D. A. et al. LBA-ECO ND-01 Landsat 28.5-m Land Cover Time Series, Rondônia, Brazil: 1984–2010 Oak Ridge National Laboratory Distributed Active Archive Center (2013); http://dx.doi.org/10.3334/ORNLDAAC/1165

  19. 19

    Fu, R. & Li, W. The influence of the land surface on the transition from dry to wet season in Amazonia. Theoret. Appl. Climatol. 78, 97–110 (2004).

    Article  Google Scholar 

  20. 20

    Yin, L. et al. What controls the interannual variation of the wet season onsets over the Amazon? J. Geophys. Res. 119, 2314–2328 (2014).

    Google Scholar 

  21. 21

    Boyce, C. K. & Lee, J. E. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proc. R. Soc. B 277, 3437–3443 (2010).

    Article  Google Scholar 

  22. 22

    Swann, A. L. S., Longo, M., Knox, R. G., Lee, E. & Moorcroft, P. R. Future deforestation in the Amazon and consequences for South American climate. Agric. For. Meteorol. 214, 12–24 (2015).

    Article  Google Scholar 

  23. 23

    Nobre, C. A. & Borma, L. D. S. ‘Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sustain. 1, 28–36 (2009).

    Article  Google Scholar 

  24. 24

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Huffman, G. J. & Bolvin, D. T. TRMM and Other Precipitation Data Set Documentation 1–40 (NASA, 2014).

    Google Scholar 

  26. 26

    Demaria, E. M. C. et al. Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. J. Geophys. Res. 116, D08103 (2011).

    Article  Google Scholar 

  27. 27

    Walko, R. L. & Avissar, R. The ocean-land-atmosphere-model (OLAM). Part I: shallow-water tests. Month. Weath. Rev. 136, 4033–4044 (2008).

    Article  Google Scholar 

  28. 28

    van Heerwaarden, C. C. & de Arellano, J. V. G. Relative humidity as an indicator for cloud formation over heterogeneous land surfaces. J. Atmos. Sci. 65, 3263–3277 (2008).

    Article  Google Scholar 

  29. 29

    Saleska, S. R. et al. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999–2006 Oak Ridge National Laboratory Distributed Active Archive Center (2013); http://dx.doi.org/10.3334/ORNLDAAC/1174

  30. 30

    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282-U127 (2012).

    Article  Google Scholar 

  31. 31

    Walker, R. et al. Protecting the Amazon with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Prodes Monitoramento da Florsta Amazonica Brasileira por Satélite Prodes (Instituto Nacional de Pesquisas Espaciais, 2015); http://www.obt.inpe.br/prodes

  33. 33

    Wang, J. F., Bras, R. L. & Eltahir, E. A. B. The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J. Hydrometeorol. 1, 267–286 (2000).

    Article  Google Scholar 

  34. 34

    Knapp, K. R. & NOAA CDR Program. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) 11 micron Brightness Temperature, Version 2 NOAA National Climatic Data Center (accessed January 2015); http://dx.doi.org/10.7289/V59P2ZKR

  35. 35

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  36. 36

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  37. 37

    Kato, S. et al. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740 (2013).

    Article  Google Scholar 

  38. 38

    Fisch, G. et al. The convective boundary layer over pasture and forest in Amazonia. Theoret. Appl. Climatol. 78, 47–59 (2004).

    Article  Google Scholar 

  39. 39

    Hsu, K. L. & Sorooshian, S. Satellite based precipitation measurement using PERSIANN system. Water Sci. Technol. Libr. 63, 27–48 (2008).

    Article  Google Scholar 

  40. 40

    de Goncalves, L. G. G. et al. Evaluation of model-derived and remotely sensed precipitation products for continental South America. J. Geophys. Res. 111, D16113 (2006).

    Article  Google Scholar 

  41. 41

    Sorooshian, S., Hsu, K., Braithwaite, D. & Ashouri, H. NOAA CDR Program. NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1 NOAA National Centers for Environmental Information (accessed 24 March 2016); http://dx.doi.org/10.7289/V51V5BWQ

Download references

Acknowledgements

D.M. acknowledges support from National Science Foundation Award 1151102. R.W. acknowledges support from National Science Foundation Award 0902197. The simulations presented in this article were performed on computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. We also acknowledge helpful correspondence with K. R. Knapp at NOAA, Asheville, North Carolina.

Author information

Affiliations

Authors

Contributions

J.K. and D.M. initiated the project, designed the research and drafted the manuscript. J.K. carried out the research. S.F. contributed ideas to the research design, data analysis and the manuscript. R.W. contributed ideas to the simulation design, simulated data analysis and the manuscript.

Corresponding author

Correspondence to Jaya Khanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4796 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khanna, J., Medvigy, D., Fueglistaler, S. et al. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nature Clim Change 7, 200–204 (2017). https://doi.org/10.1038/nclimate3226

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing