Key indicators to track current progress and future ambition of the Paris Agreement


Current emission pledges to the Paris Agreement appear insufficient to hold the global average temperature increase to well below 2 °C above pre-industrial levels1. Yet, details are missing on how to track progress towards the ‘Paris goal’, inform the five-yearly ‘global stocktake’, and increase the ambition of Nationally Determined Contributions (NDCs). We develop a nested structure of key indicators to track progress through time. Global emissions2,3 track aggregated progress1, country-level decompositions track emerging trends4,5,6 that link directly to NDCs7, and technology diffusion8,9,10 indicates future reductions. We find the recent slowdown in global emissions growth11 is due to reduced growth in coal use since 2011, primarily in China and secondarily in the United States12. The slowdown is projected to continue in 2016, with global CO2 emissions from fossil fuels and industry similar to the 2015 level of 36 GtCO2. Explosive and policy-driven growth in wind and solar has contributed to the global emissions slowdown, but has been less important than economic factors and energy efficiency. We show that many key indicators are currently broadly consistent with emission scenarios that keep temperatures below 2 °C, but the continued lack of large-scale carbon capture and storage13 threatens 2030 targets and the longer-term Paris ambition of net-zero emissions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A schematic hierarchy of potential indicators for tracking progress of the Paris Agreement at different levels.
Figure 2: A Kaya Identity decomposition of CO2 emissions and their immediate drivers (Levels 1 and 2 in Fig. 1).
Figure 3: Energy intensity of GDP (top) and carbon intensity of energy (bottom), both shown in Level 2 of Fig. 1.
Figure 4: A decomposition of the carbon intensity (CO2/energy) into the carbon intensity of fossil-fuel use (CO2/fossil, called fossil intensity) and the share of fossil fuels in energy use (fossil/energy), Level 3 in Fig. 1.
Figure 5: Historical trends and future pathways to 2040.


  1. 1

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS  Article  Google Scholar 

  2. 2

    The Emissions Gap Report 2015 (United Nations Environment Programme, 2015).

  3. 3

    Le Quéré, C. et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    Article  Google Scholar 

  4. 4

    Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Blanco, G. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  6. 6

    Steckel, J. C., Edenhofer, O. & Jakob, M. Drivers for the renaissance of coal. Proc. Natl Acad. Sci. USA 112, E3775–E3781 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions (United Nations Framework Convention on Climate Change, 2015).

  8. 8

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  9. 9

    Wilson, C., Grubler, A., Gallagher, K. S. & Nemet, G. F. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Change 2, 780–788 (2012).

    Article  Google Scholar 

  10. 10

    World Energy Investment Outlook (International Energy Agency, 2014).

  11. 11

    Jackson, R. B. et al. Reaching peak emissions. Nat. Clim. Change 6, 7–10 (2016).

    Article  Google Scholar 

  12. 12

    Qi, Y., Stern, N., Wu, T., Lu, J. & Green, F. China’s post-coal growth. Nat. Geosci. 9, 564–566 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Reiner, D. M. Learning through a portfolio of carbon capture and storage demonstration projects. Nat. Energy 1, 15011 (2016).

    Article  Google Scholar 

  14. 14

    Peters, G. P., Andrew, R. M., Solomon, S. & Friedlingstein, P. Measuring a fair and ambitious climate agreement using cumulative emissions. Environ. Res. Lett. 10, 105004 (2015).

    Article  Google Scholar 

  15. 15

    Feng, K., Davis, S. J., Sun, L. & Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 6, 7714 (2015).

    CAS  Article  Google Scholar 

  16. 16

    World Energy Outlook 2015 (International Energy Agency, 2015).

  17. 17

    Global Economic Prospects, June 2016: Divergences and Risks (World Bank, 2016).

  18. 18

    Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change 2, 2–4 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Galiana, I. & Green, C. Let the global technology race begin. Nature 462, 570–571 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  21. 21

    Ang, B. W. & Su, B. Carbon emission intensity in electricity production: a global analysis. Energy Policy 94, 56–63 (2016).

    CAS  Article  Google Scholar 

  22. 22

    Kotchen, M. J. & Mansur, E. T. Correspondence: Reassessing the contribution of natural gas to US CO2 emission reductions since 2007. Nat. Commun. 7, 10648 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Shearer, C., Ghio, N., Myllyvirta, L., Yu, A. & Nace, T. Boom and Bust 2016: Tracking the Global Coal Plant Pipeline (CoalSwarm, Sierra Club, and Greenpeace, 2016).

    Google Scholar 

  24. 24

    Davis, S. J., Matthews, D. & Caldeira, K. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1335 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    CAS  Article  Google Scholar 

  26. 26

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenerg. 7, 916–944 (2014).

    Article  Google Scholar 

  28. 28

    Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).

    Article  Google Scholar 

  29. 29

    The Global Status of CCS: 2015 (Global CCS Institute, 2015).

  30. 30

    Buck, H. J. Rapid scale-up of negative emissions technologies: social barriers and social implications. Climatic Change 139, 155–167 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Peters, G. P. The ‘best available science’ to inform 1.5 °C policy choices. Nat. Clim. Change 6, 646–649 (2016).

    Article  Google Scholar 

  32. 32

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

    Article  Google Scholar 

  33. 33

    Chen, C. & Tavoni, M. Direct air capture of CO2 and climate stabilization: a model based assessment. Climatic Change 118, 59–72 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Krey, V. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  35. 35

    Hoekstra, R. & van der Bergh, J. C. J. M. Comparing structural and index decomposition analysis. Energy Econ. 25, 39–64 (2003).

    Article  Google Scholar 

  36. 36

    Su, B. & Ang, B. W. Structural decomposition analysis applied to energy and emissions: some methodological developments. Energy Econ. 34, 177–188 (2012).

    Article  Google Scholar 

  37. 37

    Boden, T. A., Andres, R. J. & Marland, G. Global, Regional, and National Fossil-Fuel CO2 Emissions in Trends (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory US, Department of Energy, 2016).

    Google Scholar 

  38. 38

    BP Statistical Review of World Energy June 2016 (BP, 2016);

  39. 39

    Korsbakken, J. I., Peters, G. P. & Andrew, R. M. Uncertainties around reductions in China’s coal use and CO2 emissions. Nat. Clim. Change 6, 687–690 (2016).

    CAS  Article  Google Scholar 

  40. 40

    Bailis, R., Drigo, R., Ghilardi, A. & Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5, 266–272 (2015).

    CAS  Article  Google Scholar 

  41. 41

    National Accounts Main Aggregates Database (United Nations, 2015);

  42. 42

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (United Nations Framework Convention on Climate Change, 2015).

  43. 43

    Short-term Energy Outlook (US Energy Information Administration, 2016).

Download references


G.P.P., R.M.A. and J.I.K. acknowledge the support of the Research Council of Norway (projects 569980 & 209701). J.G.C. is grateful for the support of the National Environmental Science Program—Earth Systems and Climate Change (NESP-ESCC) Hub.

Author information




G.P.P., J.G.C. and C.L.Q. designed the research; G.P.P. and R.M.A. performed the analysis; all analysed the results; all wrote the paper.

Corresponding author

Correspondence to Glen P. Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1740 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peters, G., Andrew, R., Canadell, J. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nature Clim Change 7, 118–122 (2017).

Download citation

Further reading