Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Marine phytoplankton and the changing ocean iron cycle

Abstract

The availability of the micronutrient iron governs phytoplankton growth across much of the ocean, but the global iron cycle is changing rapidly due to accelerating acidification, stratification, warming and deoxygenation. These mechanisms of global change will cumulatively affect the aqueous chemistry, sources and sinks, recycling, particle dynamics and bioavailability of iron. Biological iron demand will vary as acclimation to environmental change modifies cellular requirements for photosynthesis and nitrogen acquisition and as adaptive evolution or community shifts occur. Warming, acidification and nutrient co-limitation interactions with iron biogeochemistry will all strongly influence phytoplankton dynamics. Predicting the shape of the future iron cycle will require understanding the responses of each component of the unique biogeochemistry of this trace element to many concurrent and interacting environmental changes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Global change and the interactive effects of Fe on Southern Ocean diatoms and subtropical N2-fixing Trichodesmium.
Figure 2: Interactive Fe and warming effects during two factorial matrix experiments using Southern Ocean diatoms.

References

  1. Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model CESM1(BGC). J. Clim. 26, 9291–9321 (2013).

    Article  Google Scholar 

  2. Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? Glob. Biogeochem. Cycles 30, 149–174 (2016). Compares 13 global ocean iron biogeochemistry models to iron measurement data sets from cross-basin transects, and finds that most do not match well, with suggestions for improvements.

    Article  CAS  Google Scholar 

  3. Lis, H., Shaked, Y., Kranzler, C., Keren, N. & Morel, F. M. M. Iron bioavailability to phytoplankton: an empirical approach. ISME J. 9, 1003–1013 (2015).

    Article  CAS  Google Scholar 

  4. Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).

    Article  Google Scholar 

  5. Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

    Article  CAS  Google Scholar 

  6. Resing, J. A. et al. Basin scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).

    Article  CAS  Google Scholar 

  7. Armbrust, E. V. The life of diatoms in the world's oceans. Nature 459, 185–192 (2009).

    Article  CAS  Google Scholar 

  8. Hutchins, D. A., Mulholland, M. R. & Fu, F.-X. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22, 128–145 (2009).

    Article  Google Scholar 

  9. Mackie, D. S. et al. Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake. Geochem. Geophys. Geosyst. 9, Q03Q08 (2008).

    Article  CAS  Google Scholar 

  10. Boyd, P. W., Arrigo, K. R., Strzepek, R. & van Dijken, G. L. Mapping iron demand provides insights into Southern Ocean supply mechanisms. J. Geophys. Res. 117, C06009 (2012).

    Article  CAS  Google Scholar 

  11. Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

    Article  CAS  Google Scholar 

  12. Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 43, 1347–1350 (2014).

    Article  CAS  Google Scholar 

  13. Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J. & Toggweiler, J. R. The Southern Hemisphere westerlies in a warming world: propping open the door to the deep ocean. J. Clim. 19, 6382–6390 (2006).

    Article  Google Scholar 

  14. Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  CAS  Google Scholar 

  15. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  16. Smith, K. L. Jr Free-drifting icebergs in the Southern Ocean: an overview. Deep-Sea Res. II 58, 1277–1284 (2011).

    Article  Google Scholar 

  17. Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change 5, 1002–1006 (2015).

    Article  CAS  Google Scholar 

  18. Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate-change mediated oceanic multi-stressors. Nat. Clim. Change 5, 71–79 (2015).

    Article  Google Scholar 

  19. Fishwick, M. P. et al. The impact of changing surface ocean conditions on the dissolution of aerosol iron. Glob. Biogeochem. Cycles 28, 1235–1250 (2014).

    Article  CAS  Google Scholar 

  20. Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R. & Powell, C. F. Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta 89, 173–189 (2012).

    Article  CAS  Google Scholar 

  21. Ito, A. & Xu, L. Response of acid mobilization of iron-containing mineral dust to improvement of air quality projected in the future. Atmos. Chem. Phys. 14, 3441–3459 (2014).

    Article  CAS  Google Scholar 

  22. Ito, T., Nenes, A., Johnson, M. S., Meskhidze, N. & Deutsch, C. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nat. Geosci. 9, 409–470 (2016).

    Article  CAS  Google Scholar 

  23. Clegg, S. L. & Whitfield, M. A generalized model for the scavenging of trace metals in the open ocean—II: thorium scavenging. Deep-Sea Res. I 38, 91–120 (1991).

    Article  CAS  Google Scholar 

  24. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  25. Wilhelm, S. W. et al. Elemental quotas and physiology of a southwestern Pacific Ocean plankton community as a function of iron availability. Aquat. Microb. Ecol. 68, 185–194 (2013).

    Article  Google Scholar 

  26. Hutchins, D. A. et al. Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnol. Oceanogr. 47, 997–1011 (2002).

    Article  Google Scholar 

  27. Fu, F.-X. et al. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 53, 2472–2484 (2008).

    Article  CAS  Google Scholar 

  28. King, A. L., Sañudo-Wilhelmy, S. A., Leblanc, K., Hutchins, D. A. & Fu, F.-X. CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom. ISME J. 5, 1388–1396 (2011).

    Article  CAS  Google Scholar 

  29. Xu, K., Fu, F.-X. & Hutchins, D. A. Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability. Limnol. Oceanogr. 59, 919–931 (2014).

    Article  CAS  Google Scholar 

  30. Zhu, Z. et al. A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 550, 39–51 (2016).

    Article  CAS  Google Scholar 

  31. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  CAS  Google Scholar 

  32. Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).

    Article  CAS  Google Scholar 

  33. Quigg, A., Irwin, A. J. & Finkel, Z. V. Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc. R. Soc. B 278, 526–534 (2011).

    Article  Google Scholar 

  34. Orr, J. C. et al. Anthropogenic acidification over the twenty first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  CAS  Google Scholar 

  35. Shadwick, E. H., Trull, T. W., Thomas, H. & Gibson, J. A. E. Vulnerability of polar oceans to ocean acidification: comparison of Arctic and Antarctic seasonal cycles. Sci. Rep. 3, 2339 (2013).

    Article  CAS  Google Scholar 

  36. Tortell, P. D. et al. CO2 sensitivity of Southern Ocean phytoplankton. Geophys. Res. Lett. 35, L04605 (2008).

    Article  CAS  Google Scholar 

  37. Feng, Y. et al. Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep-Sea Res. I 57, 368–383 (2010).

    Article  CAS  Google Scholar 

  38. Hopkinson, B. M. et al. The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnol. Oceanogr. 55, 2011–2024 (2010).

    Article  CAS  Google Scholar 

  39. Hoppe, C. J. M. et al. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS ONE 8, e79890 (2013).

    Article  Google Scholar 

  40. Sugie, K. et al. Synergistic effects of pCO2 and iron availability on nutrient consumption ratio of the Bering Sea phytoplankton community. Biogeosciences 10, 6309–6321 (2013).

    Article  CAS  Google Scholar 

  41. Yoshimura, T. et al. Organic matter production response to CO2 increase in open subarctic plankton communities: comparison of six microcosm experiments under iron-limited and -enriched bloom conditions. Deep-Sea Res. I 94, 1–14 (2014).

    Article  CAS  Google Scholar 

  42. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 1–10 (2011).

    Article  CAS  Google Scholar 

  43. Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).

    Article  CAS  Google Scholar 

  44. Kustka, A. B. et al. Iron requirements for dinitrogen- and ammonium supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol. Oceanogr. 48, 1869–1884 (2003).

    Article  CAS  Google Scholar 

  45. Hutchins, D. A., Fu, F.-X., Webb, E. A., Walworth, N. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat. Geosci. 6, 790–795 (2013).

    Article  CAS  Google Scholar 

  46. Fu, F.-X. et al. Differing responses of marine N2-fixers to warming and consequences for future diazotroph community structure. Aquat. Microb. Ecol. 72, 33–46 (2014).

    Article  Google Scholar 

  47. Hutchins, D. A. et al. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2 . Nat. Commun. 6, 8155 (2015).

    Article  Google Scholar 

  48. McMahon, K. W., McCarthy, M. D., Sherwood, O. A., Larsen, T. & Guilderson, T. P. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean. Science 350, 1530–1533 (2015).

    Article  CAS  Google Scholar 

  49. Shi, D., Kranz, S. A., Kim, J.-M. & Morel, F. M. M. Ocean acidification slows nitrogen fixation and growth in dominant diazotroph Trichodesmium under low-iron conditions. Proc. Natl Acad. Sci. USA 109, E3094–E3100 (2012).

    Article  CAS  Google Scholar 

  50. Walworth, N. G. et al. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nat. Commun. 7, 12081 (2016). Examines the unique physiologies and proteomes of iron and phosphorus co-limited Trichodesmium and their interactions with adaptation to high CO 2.

    Article  CAS  Google Scholar 

  51. Rose, J. M. et al. Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages. Biogeosciences 6, 3131–3147 (2009). Demonstrates the markedly nonlinear responses of a Ross Sea diatom community to the interactive effects of iron and warming.

    Article  CAS  Google Scholar 

  52. Boyd, P. W. et al. Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Change 6, 207–216 (2016). Investigates how an Antarctic diatom responds to multivariate changes in five climate change factors, and finds that warming and iron are the most influential.

    Article  Google Scholar 

  53. Monteiro, F. M., Dutkiewicz, S. & Follows, M. J. Biogeographical controls on the marine nitrogen fixers. Glob. Biogeochem. Cycles 25, GB2003 (2011).

    Article  CAS  Google Scholar 

  54. Maranon, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, e99312 (2004).

    Article  CAS  Google Scholar 

  55. Sunda, W. G. & Huntsman, S. A. Interactive effects of light and temperature on iron limitation in a marine diatom: implications for marine productivity and carbon cycling. Limnol. Oceanogr. 56, 1475–1488 (2011). Shows that diatom iron use efficiency increases as a function of temperature and light.

    Article  CAS  Google Scholar 

  56. Clarke, A. Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr. Mar Biol. Annu. Rev. 21, 341–453 (1983).

    Google Scholar 

  57. Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013). Finds that phytoplankton protein synthesis per ribosome increases with warming, with implications for nutrient requirements and ratios.

    Article  CAS  Google Scholar 

  58. Saito M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).

    Article  CAS  Google Scholar 

  59. Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

    Article  Google Scholar 

  60. Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).

    Article  CAS  Google Scholar 

  61. Pelletier, J. D. et al. Forecasting the response of Earth's surface to future climatic and land use changes: a review of methods and research needs. Earth's Future 3, 220–251 (2015).

    Article  Google Scholar 

  62. Beman, J. M. et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl Acad. Sci. USA 108, 208–213 (2011).

    Article  CAS  Google Scholar 

  63. Muggli, D. L., Lecourt, M. & Harrison, P. J. Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. Mar. Ecol. Prog. Ser. 132, 215–227 (1996).

    Article  CAS  Google Scholar 

  64. Muggli, D. L. & Harrison, P. J. Effects of nitrogen source on the physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions. Mar. Ecol. Prog. Ser. 130, 255–267 (1996).

    Article  CAS  Google Scholar 

  65. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  CAS  Google Scholar 

  66. Hutchins, D. A. et al. Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: experimental results from the SAZ project. J. Geophys. Res. Oceans 106, 559–572 (2002).

    Google Scholar 

  67. Mills, M. M., Ridame, C., Davey, M., LaRoche, J. & Gelder, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).

    Article  CAS  Google Scholar 

  68. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  CAS  Google Scholar 

  69. Snow, J. T. et al. Environmental controls on the biogeography of diazotrophy and Trichodesmium in the Atlantic Ocean. Glob. Biogeochem. Cycles 29, 865–884 (2015).

    Article  CAS  Google Scholar 

  70. Garcia, N. S., Fu, F.-X., Sedwick, P. N. & Hutchins, D. A. Iron deficiency increases growth and nitrogen fixation rates of phosphorus-deficient marine cyanobacteria. ISME J. 9, 238–245 (2015).

    Article  CAS  Google Scholar 

  71. Hutchins, D. A. & Fu, F.-X. in Nitrogen in the Marine Environment 2nd edn (eds Capone, D. G. et al.) 1627–1653 (Elsevier, 2008).

    Book  Google Scholar 

  72. Ward, B. A., Dutkiewicz, S., Moore, C. M. & Follows, M. J. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075 (2013).

    Article  CAS  Google Scholar 

  73. Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: impacts on marine productivity, nitrogen fixation, and carbon export. Glob. Biogeochem. Cycles 29, 325–340 (2015).

    Article  CAS  Google Scholar 

  74. Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004). Demonstrates that diatoms from iron-limited oceanic regimes have evolved a photosynthetic apparatus that requires much less iron compared with coastal species.

    Article  CAS  Google Scholar 

  75. Strzepek, R., Maldonado, M., Hunter, K., Frew, R. & Boyd, P. W. Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol. Oceanogr. 56, 1983–2002 (2012).

    Article  CAS  Google Scholar 

  76. Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).

    Article  CAS  Google Scholar 

  77. Marchetti, A., Maldonado, M. T., Lane, E. S. & Harrison, P. J. Iron requirements of the pennate diatom Pseudo-nitzschia: comparison of oceanic (HNLC) and coastal species. Limnol. Oceanogr. 51, 2092–2101 (2006).

    Article  CAS  Google Scholar 

  78. King A. L. et al. A comparison of biogenic iron quotas during a diatom spring bloom using multiple approaches. Biogeosciences 9, 667–687 (2012).

    Article  CAS  Google Scholar 

  79. Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).

    Article  CAS  Google Scholar 

  80. Schaum, C. E. & Collins, S. Plasticity predicts evolution in a marine alga. Proc. R. Soc. B 281, 20141486 (2014).

    Article  Google Scholar 

  81. Tagliabue, A. et al. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7, 314–320 (2014).

    Article  CAS  Google Scholar 

  82. Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. Y. & Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 9, 590–595 (2016).

    Article  CAS  Google Scholar 

  83. Bruland, K. W., Donat J. R. & Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Article  CAS  Google Scholar 

  84. Hutchins, D. A., Witter, A. E., Butler, A. & Luther, G. W. III Competition among marine phytoplankton for different chelated iron species. Nature 400, 858–861 (1999).

    Article  CAS  Google Scholar 

  85. Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69 (2012).

    Google Scholar 

  86. Breitbarth, E. et al. Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment. Biogeosciences 7, 1065–1073 (2010).

    Article  CAS  Google Scholar 

  87. Capone D. & Hutchins D. A. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6, 711–717 (2013).

    Article  CAS  Google Scholar 

  88. Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Article  CAS  Google Scholar 

  89. Croot, P. L. et al. Retention of dissolved iron and Fe II in an iron induced Southern Ocean phytoplankton bloom. Geophys. Res. Lett. 28, 3425–3428 (2001).

    Article  CAS  Google Scholar 

  90. Kustka, A. B. et al. The influence of iron and siderophores on eukaryotic phytoplankton growth rates and community composition in the Ross Sea. Mar. Chem. 173, 195–207 (2015).

    Article  CAS  Google Scholar 

  91. Barbeau, K., Rue, E. L., Bruland, K. W. & Butler, A. Photochemical cycling of iron in the surface ocean mediated by microbial iron (III)-binding ligands. Nature 413, 409–413 (2001). Photoreduction of iron–ligand complexes plays a critical role in making organically complexed iron available to the biota.

    Article  CAS  Google Scholar 

  92. Hoffmann, L. J., Breitbarth, E., Boyd, P. W. & Hunter, K. A. Influence of ocean warming and acidification on trace metal biogeochemistry. Mar. Ecol. Prog. Ser. 470, 191–205 (2012).

    Article  CAS  Google Scholar 

  93. Joint, I., Doney, S. C. & Karl, D. M. Will ocean acidification affect marine microbes? ISME J. 5, 1–7 (2011).

    Article  Google Scholar 

  94. Zark, M., Riebesell, U. & Dittmar, T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci. Adv. 1, e1500531 (2015).

    Article  CAS  Google Scholar 

  95. Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).

    Article  CAS  Google Scholar 

  96. Gledhill, M., Achterberg, E. P., Li, K., Mohamed, K. N. & Rijkenberg, M. J. A. Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters. Mar. Chem. 177, 421–433 (2015).

    Article  CAS  Google Scholar 

  97. Stockdale, A., Tipping, E., Lofts, S. & Mortimer, R. J. G. Effect of ocean acidification on organic and inorganic speciation of trace metals. Environ. Sci. Technol. 50, 1906–1913 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Fu and S. Sanudo-Wilhelmy for help with obtaining unpublished Fe quota data, and J. Brown and the University of Southern California Wrigley Institute of Environmental Sciences for their generous assistance with graphics. Support was provided by US National Science Foundation grants OCE 1260490 and OCE 1538525 to D.A.H., Australian Research Council Australian Laureate Fellowship project FL160100131 and Antarctic Climate and Ecosystems Cooperative Research Centre funding to P.W.B. and the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership Project ID SR140300001 to both authors.

Author information

Authors and Affiliations

Authors

Contributions

D.A.H. and P.W.B. contributed equally to conceiving and developing the material presented, and to writing the paper.

Corresponding author

Correspondence to D. A. Hutchins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Marine phytoplankton and the changing ocean iron cycle (PDF 340 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hutchins, D., Boyd, P. Marine phytoplankton and the changing ocean iron cycle. Nature Clim Change 6, 1072–1079 (2016). https://doi.org/10.1038/nclimate3147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing