Article | Published:

Similar estimates of temperature impacts on global wheat yield by three independent methods

Nature Climate Change volume 6, pages 11301136 (2016) | Download Citation

This article has been updated

Abstract

The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 20 October 2016

    In the version of this Article originally published, multiple errors were made in the author affiliations. References 49 and 51 were mislabelled. A source of funding was also omitted. These errors and omissions have been corrected in all versions.

References

  1. 1.

    & World Agriculture Towards 2030/2050: The 2012 Revision Report No. 12-03 (FAO, 2012).

  2. 2.

    & Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).

  3. 3.

    et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

  4. 4.

    et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model Softw. 72, 287–303 (2015).

  5. 5.

    , , & Climate change impacts on regional winter wheat production in main wheat production regions of China. Agric. Forest Meteorol. 171, 234–248 (2013).

  6. 6.

    et al. Vulnerability of wheat production to climate change in India. Clim. Res. 59, 173–187 (2014).

  7. 7.

    , , & Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Phil. Trans. R. Soc. A 369, 117–136 (2011).

  8. 8.

    et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

  9. 9.

    et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

  10. 10.

    , & Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

  11. 11.

    & Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 1–7 (2007).

  12. 12.

    , & Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 149, 33–47 (2011).

  13. 13.

    , , & US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits. Environ. Res. Lett. 10, 115002 (2015).

  14. 14.

    , , , & Handbook of Climate Change and Agroecosystems 261–277 (Imperial College Press, 2015).

  15. 15.

    et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. Forest Meteorol. 170, 166–182 (2013).

  16. 16.

    & A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crop Res. 156, 180–190 (2014).

  17. 17.

    et al. Long-term Climate Change: Projections, Commitments and Irreversibility (Cambridge Univ. Press, 2013).

  18. 18.

    , & Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? (Australian Centre for International Agricultural Research, 2014).

  19. 19.

    , , , & Climatic impacts on winter wheat yields in Picardy, France and Rostov, Russia: 1973–2010. Agric. Forest Meteorol. 176, 25–37 (2013).

  20. 20.

    , & Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

  21. 21.

    , & Évolution des rendements de plusieurs plantes de grande culture une réaction différente au réchauffement climatique selon les espèces. C. R. Acad. Sci. 96, 4–16 (2010).

  22. 22.

    et al. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim. Res. 65, 87–105 (2015).

  23. 23.

    Food and Agriculture Organization of the United Nations (FAO, 2011);

  24. 24.

    , , , & Effects of shading on morphology, physiology and grain yield of winter wheat. Eur. J. Agron. 33, 267–275 (2010).

  25. 25.

    et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).

  26. 26.

    & Nonlinear temperature effects indicate severe damages to U. S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

  27. 27.

    , , & Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

  28. 28.

    et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 20, 2301–2320 (2014).

  29. 29.

    & Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

  30. 30.

    , & Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).

  31. 31.

    , & The impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997–1012 (2011).

  32. 32.

    et al. Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric. Ecosys. Environ. 142, 6–17 (2011).

  33. 33.

    , & The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 045003 (2015).

  34. 34.

    et al. Analysis of wheat yield and climatic trends in Mexico. Field Crop Res. 94, 250–256 (2005).

  35. 35.

    et al. Response of wheat growth, grain yield and water use to elevated CO under a Free-Air CO Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670–2686 (2015).

  36. 36.

    , & Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

  37. 37.

    , , & FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol. 179, 5–9 (2008).

  38. 38.

    et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 6, 786–790 (2016).

  39. 39.

    , , & The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Crop Pasture Sci. 40, 1–13 (1989).

  40. 40.

    & Heat tolerance in temperate cereals: an overview. Funct. Plant Biol. 21, 695–703 (1994).

  41. 41.

    , , , & Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur. J. Agron. 7, 43–52 (1997).

  42. 42.

    et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

  43. 43.

    , , , & Handbook of Climate Change and Agroecosystems 223–259 (Imperial College Press, 2015).

  44. 44.

    et al. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911–925 (2015).

  45. 45.

    , , , & Impacts of observed growing-season warming trends since 1980 on crop yields in China. Reg. Environ. Change 14, 7–16 (2014).

  46. 46.

    & Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).

  47. 47.

    & Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160, 1710–1718 (2012).

  48. 48.

    , , & Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 18, 2899–2914 (2012).

  49. 49.

    & Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. Int. J. Climatol. 33, 699–708 (2013).

  50. 50.

    , , , & A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

  51. 51.

    , & MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, 2013–2024 (2010).

Download references

Acknowledgements

This work was supported by the National High-Tech Research and Development Program of China (2013AA100404), the National Natural Science Foundation of China (31271616, 31611130182, 41571088 and 31561143003), the National Research Foundation for the Doctoral Program of Higher Education of China (20120097110042), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the China Scholarship Council. We would like to acknowledge support provided by IFPRI through the Global Futures and Strategic Foresight project, the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the CGIAR Research Program on Wheat and the Agricultural Model Intercomparison and Improvement Project (AgMIP).

Author information

Affiliations

  1. National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China

    • Bing Liu
    •  & Yan Zhu
  2. Agricultural & Biological Engineering Department, University of Florida, Gainesville, Florida 32611, USA

    • Bing Liu
    • , Senthold Asseng
    • , James W. Jones
    •  & Gerrit Hoogenboom
  3. Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

    • Christoph Müller
    •  & Katharina Waha
  4. Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn 53115, Germany

    • Frank Ewert
    •  & Ehsan E. Rezaei
  5. Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany

    • Frank Ewert
  6. Columbia University Center for Climate Systems Research, New York, New York 10025, USA

    • Joshua Elliott
    • , Alex C. Ruane
    • , Cynthia Rosenzweig
    •  & Delphine Deryng
  7. University of Chicago Computation Institute, Chicago, Illinois 60637, USA

    • Joshua Elliott
    •  & Delphine Deryng
  8. Department of Environmental Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, California 94305, USA

    • David B. Lobell
  9. UMR LEPSE, INRA, Montpellier SupAgro, 34060 Montpellier, France

    • Pierre Martre
  10. National Aeronautics and Space Administration Goddard Institute for Space Studies, New York, New York 10025, USA

    • Alex C. Ruane
    •  & Cynthia Rosenzweig
  11. INRA, UMR1248 Agrosystèmes et développement territorial (AGIR), 31326 Castanet-Tolosan Cedex, France

    • Daniel Wallach
  12. CGIAR Research Program on Climate Change, Agriculture and Food Security, Borlaug Institute for South Asia, CIMMYT, New Delhi-110012, India

    • Pramod K. Aggarwal
  13. Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA

    • Phillip D. Alderman
  14. Department of Plant Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90112, Thailand

    • Jakarat Anothai
  15. Department of Geological Sciences, Michigan State University East Lansing, Michigan 48823, USA

    • Bruno Basso
    •  & Iurii Shcherbak
  16. W.K. Kellogg Biological Station, Michigan State University East Lansing, Michigan 48823, USA

    • Bruno Basso
    •  & Iurii Shcherbak
  17. Institute of Ecology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg D-85764, Germany

    • Christian Biernath
    •  & Eckart Priesack
  18. The James Hutton Institute Invergowrie, Dundee DD2 5DA, UK

    • Davide Cammarano
  19. Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

    • Andy Challinor
    •  & Ann-Kristin Koehler
  20. CGIAR-ESSP Program on Climate Change, Agriculture and Food Security, International Centre for Tropical Agriculture (CIAT), A.A. 6713 Cali, Colombia

    • Andy Challinor
  21. European Commission, Joint Research Centre, via Enrico Fermi, 2749 Ispra 21027, Italy

    • Giacomo De Sanctis
  22. Cantabrian Agricultural Research and Training Centre (CIFA), 39600 Muriedas, Spain

    • Jordi Doltra
  23. Department of Agronomy, University of Cordoba, Apartado 3048, 14080 Cordoba, Spain

    • Elias Fereres
    •  & Margarita Garcia-Vila
  24. Department of Geography, University of Munich, Munich 80333, Germany

    • Christian Folberth
  25. Ecosystem Services and Management Program, International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, Austria

    • Christian Folberth
  26. Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599 Stuttgart, Germany

    • Sebastian Gayler
    •  & Thilo Streck
  27. AgWeatherNet Program, Washington State University, Prosser, Washington 99350, USA

    • Gerrit Hoogenboom
  28. Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada

    • Leslie A. Hunt
  29. Department of Geographical Sciences, University of Maryland, College Park, Maryland 20742, USA

    • Roberto C. Izaurralde
    •  & Curtis D. Jones
  30. Texas A&M AgriLife Research and Extension Center, Texas A&M University, Temple, Texas 76502, USA

    • Roberto C. Izaurralde
  31. Department of Agroecology, Aarhus University, 8830 Tjele, Denmark

    • Mohamed Jabloun
    •  & Jørgen E. Olesen
  32. Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany

    • Kurt C. Kersebaum
    •  & Claas Nendel
  33. USDA, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA

    • Bruce A. Kimball
    • , Gerard W. Wall
    •  & Jeffrey W. White
  34. Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, IARI PUSA, New Delhi 110012, India

    • Soora Naresh Kumar
  35. Landscape & Water Sciences, Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria 3400, Australia

    • Garry J. O’Leary
  36. The School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA

    • Michael J. Ottman
  37. Natural Resources Institute Finland (Luke), FI-00790 Helsinki, Finland

    • Taru Palosuo
    • , Reimund P. Rötter
    •  & Fulu Tao
  38. Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA

    • P. V. Vara Prasad
  39. Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany

    • Thomas A. M. Pugh
  40. School of Geography, Earth & Environmental Science and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK

    • Thomas A. M. Pugh
  41. CIMMYT Int., AP 6-641, 06600 Mexico DF, Mexico

    • Matthew Reynolds
  42. Center for Development Research (ZEF), Walter-Flex-Straße 3, 53113 Bonn, Germany

    • Ehsan E. Rezaei
  43. Georg-August-University Göttingen, Grisebachstraße 6, 37077 Göttingen, Germany

    • Reimund P. Rötter
  44. University of Natural Resources and Life Sciences, 1180 Vienna, Austria

    • Erwin Schmid
  45. Computational and Systems Biology Department, Rothamsted Research, Harpenden AL5 2JQ, UK

    • Mikhail A. Semenov
    •  & Pierre Stratonovitch
  46. PBL Netherlands Environmental Assessment Agency, 3720 AH, Bilthoven, The Netherlands

    • Elke Stehfest
  47. Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, USA

    • Claudio O. Stöckle
  48. PPS, WSG and CALM, Wageningen University and Research, 6700AA Wageningen, The Netherlands

    • Iwan Supit
    •  & Joost Wolf
  49. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China

    • Fulu Tao
  50. CSIRO Agriculture & Food, St Lucia, Queensland 4067, Australia

    • Peter Thorburn
    •  & Katharina Waha
  51. CSIRO Agriculture & Food, Black Mountain, Australian Capital Territory 2601, Australia

    • Enli Wang
    •  & Zhigan Zhao
  52. Department of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China

    • Zhigan Zhao

Authors

  1. Search for Bing Liu in:

  2. Search for Senthold Asseng in:

  3. Search for Christoph Müller in:

  4. Search for Frank Ewert in:

  5. Search for Joshua Elliott in:

  6. Search for David B. Lobell in:

  7. Search for Pierre Martre in:

  8. Search for Alex C. Ruane in:

  9. Search for Daniel Wallach in:

  10. Search for James W. Jones in:

  11. Search for Cynthia Rosenzweig in:

  12. Search for Pramod K. Aggarwal in:

  13. Search for Phillip D. Alderman in:

  14. Search for Jakarat Anothai in:

  15. Search for Bruno Basso in:

  16. Search for Christian Biernath in:

  17. Search for Davide Cammarano in:

  18. Search for Andy Challinor in:

  19. Search for Delphine Deryng in:

  20. Search for Giacomo De Sanctis in:

  21. Search for Jordi Doltra in:

  22. Search for Elias Fereres in:

  23. Search for Christian Folberth in:

  24. Search for Margarita Garcia-Vila in:

  25. Search for Sebastian Gayler in:

  26. Search for Gerrit Hoogenboom in:

  27. Search for Leslie A. Hunt in:

  28. Search for Roberto C. Izaurralde in:

  29. Search for Mohamed Jabloun in:

  30. Search for Curtis D. Jones in:

  31. Search for Kurt C. Kersebaum in:

  32. Search for Bruce A. Kimball in:

  33. Search for Ann-Kristin Koehler in:

  34. Search for Soora Naresh Kumar in:

  35. Search for Claas Nendel in:

  36. Search for Garry J. O’Leary in:

  37. Search for Jørgen E. Olesen in:

  38. Search for Michael J. Ottman in:

  39. Search for Taru Palosuo in:

  40. Search for P. V. Vara Prasad in:

  41. Search for Eckart Priesack in:

  42. Search for Thomas A. M. Pugh in:

  43. Search for Matthew Reynolds in:

  44. Search for Ehsan E. Rezaei in:

  45. Search for Reimund P. Rötter in:

  46. Search for Erwin Schmid in:

  47. Search for Mikhail A. Semenov in:

  48. Search for Iurii Shcherbak in:

  49. Search for Elke Stehfest in:

  50. Search for Claudio O. Stöckle in:

  51. Search for Pierre Stratonovitch in:

  52. Search for Thilo Streck in:

  53. Search for Iwan Supit in:

  54. Search for Fulu Tao in:

  55. Search for Peter Thorburn in:

  56. Search for Katharina Waha in:

  57. Search for Gerard W. Wall in:

  58. Search for Enli Wang in:

  59. Search for Jeffrey W. White in:

  60. Search for Joost Wolf in:

  61. Search for Zhigan Zhao in:

  62. Search for Yan Zhu in:

Contributions

B.L., S.A., C.M., F.E., J.E., D.B.L., P.M., A.C.R., D.W., J.W.J., C.R. and Y.Z. motivated the study, S.A. coordinated the study, B.L., S.A., C.M., F.E., J.E., D.B.L., P.M., A.C.R. and D.W. analysed data, P.K.A., P.D.A., J.A., B.B., C.B., D.C., A.C., D.D., G.D.S., J.D., E.F., C.F., M.G.-V., S.G., G.H., L.A.H., R.C.I., M.J., C.D.J., K.C.K., A.-K.K., C.M., S.N.K., C.N., G.O’L., J.E.O., T.P., E.P., T.A.M.P., E.E.R., R.P.R., E.Schmid, M.A.S., I.Shcherbak, E.Stehfest, C.O.S., P.S., T.S., I.Supit, F.T., P.T., K.W., E.W., J.W., Z.Z. and Y.Z. carried out crop model simulations and discussed the results, C.M., J.E., B.A.K., M.J.O., G.W.W., J.W.W., M.R., P.D.A., P.V.V.P. and A.C.R. provided experimental data, B.L., S.A., C.M., F.E., J.E., D.B.L., P.M., A.C.R., D.W., J.W.J., C.R. and Y.Z. wrote the paper. All other authors gave comments on the earlier version of this manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Yan Zhu.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nclimate3115

Further reading