Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resilience of Amazon forests emerges from plant trait diversity

Abstract

Climate change threatens ecosystems worldwide, yet their potential future resilience remains largely unquantified1. In recent years many studies have shown that biodiversity, and in particular functional diversity, can enhance ecosystem resilience by providing a higher response diversity2,3,4,5. So far these insights have been mostly neglected in large-scale projections of ecosystem responses to climate change6. Here we show that plant trait diversity, as a key component of functional diversity, can have a strikingly positive effect on the Amazon forests’ biomass under future climate change. Using a terrestrial biogeochemical model that simulates diverse forest communities on the basis of individual tree growth7, we show that plant trait diversity may enable the Amazon forests to adjust to new climate conditions via a process of ecological sorting, protecting the Amazon’s carbon sink function. Therefore, plant trait diversity, and biodiversity in general, should be considered in large-scale ecosystem projections and be included as an integral part of climate change research and policy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Simulated rainforest biomass under climate change and different plant trait diversity.
Figure 2: Climate-change-induced plant trait shifts lead to biomass recovery.
Figure 3: Forest height structure recovers with biomass.
Figure 4: Effect of plant trait diversity on biomass resilience of the Amazon basin.

References

  1. 1

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  Google Scholar 

  2. 2

    Gunderson, L. H. Ecological Resilience—in theory and application. Annu. Rev. Ecol. Evol. Syst. 31, 425–439 (2000).

    Article  Google Scholar 

  3. 3

    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article  Google Scholar 

  4. 4

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2010).

    Article  Google Scholar 

  5. 5

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article  Google Scholar 

  6. 6

    Sitch, S., Huntingford, C., Gedney, N. & Levy, P. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  7. 7

    Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).

    Article  Google Scholar 

  8. 8

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  9. 9

    Thompson, I., Mackey, B. & McNulty, S. M. A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems Technical Series no. 43, 67 (Montreal, Canada, 2009).

  10. 10

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article  Google Scholar 

  11. 11

    Asner, G. P. et al. Amazonian functional diversity from forest canopy chemical assembly. Proc. Natl Acad. Sci. USA 111, 5604–5609 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA 111, 13697–13702 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Chave, J. et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16, 2356–2367 (2006).

    Article  Google Scholar 

  14. 14

    Lohbeck, M. et al. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14, 89–96 (2012).

    Article  Google Scholar 

  15. 15

    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  Google Scholar 

  19. 19

    Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338–1347 (2010).

    Article  Google Scholar 

  20. 20

    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Kattge, J. et al. TRY - a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  22. 22

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Collins, W. J. et al. Evaluation of the HadGEM2 Model Hadley Centre technical note 74 (Met Office, 2008); http://www.metoffice.gov.uk/media/pdf/8/7/HCTN_74.pdf

  24. 24

    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  25. 25

    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Slik, J. W. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22, 1261–1271 (2013).

    Article  Google Scholar 

  27. 27

    Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492 (2010).

    Article  Google Scholar 

  28. 28

    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    Article  Google Scholar 

  31. 31

    Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).

    Article  Google Scholar 

  32. 32

    Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  33. 33

    Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 14026 (2013).

    Article  Google Scholar 

  35. 35

    Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637 (2001).

    Article  Google Scholar 

  36. 36

    Döll, P. & Lehner, B. Validation of a new global 30-min drainage direction map. J. Hydrol. 258, 214–231 (2002).

    Article  Google Scholar 

  37. 37

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).

  38. 38

    Jenkins, D. G. & Florida, C. Estimating ecological production from biomass. Ecosphere 6, art49 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank H. J. Schellnhuber, W. Lucht, S. Rahmstorf, A. Rammig, F. Langerwisch, A. Schlums (Potsdam Institute for Climate Impact Research) and Ü. Niinemets (Estonian University of Life Sciences) for helpful comments that improved the manuscript. The research leading to these results has received partial funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 283093—The Role Of Biodiversity In climate change mitigatioN (ROBIN). J.H. acknowledges funding from the Helmholtz Alliance ‘Remote Sensing and Earth System Dynamics’. The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is/has been supported by DIVERSITAS, IGBP, the Global Land Project, the UK Natural Environment Research Council (NERC) through its program QUEST (Quantifying and Understanding the Earth System), the French Foundation for Biodiversity Research (FRB), and GIS ‘Climat, Environnement et Société’ France.

Author information

Affiliations

Authors

Contributions

B.S., W.v.B., A.B., K.T., M.P.-C. and L.P. conceived the experiments, B.S. and W.v.B. performed the experiments and analysed the data, J.H. contributed material/analysis tools. B.S., W.v.B., A.B., K.T., M.P.-C., L.P. and J.J. co-wrote the paper.

Corresponding author

Correspondence to Boris Sakschewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1927 kb)

Supplementary Movie

Supplementary Movie (MOV 127097 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakschewski, B., von Bloh, W., Boit, A. et al. Resilience of Amazon forests emerges from plant trait diversity. Nature Clim Change 6, 1032–1036 (2016). https://doi.org/10.1038/nclimate3109

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing