Towards a science of climate and energy choices


The linked problems of energy sustainability and climate change are among the most complex and daunting facing humanity at the start of the twenty-first century. This joint Nature Energy and Nature Climate Change Collection illustrates how understanding and addressing these problems will require an integrated science of coupled human and natural systems; including technological systems, but also extending well beyond the domain of engineering or even economics. It demonstrates the value of replacing the stylized assumptions about human behaviour that are common in policy analysis, with ones based on data-driven science. We draw from and engage articles in the Collection to identify key contributions to understanding non-technological factors connecting economic activity and greenhouse gas emissions, describe a multi-dimensional space of human action on climate and energy issues, and illustrate key themes, dimensions and contributions towards fundamental understanding and informed decision making.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Annual global investment rates in selected energy systems, and global GHG emissions, 2007–2013.


  1. 1

    Crutzen, P. J. & Stoermer, E. F. The 'Anthropocene'. Global Change Newsletter 41, 17–18 (2000).

    Google Scholar 

  2. 2

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014.).

  3. 3

    Climate Change: Evidence and Causes (The Royal Society and the US National Academy of Science, 2014).

  4. 4

    Climate Stabilization Targets: Emissions, Concentrations, and Impacts for Decades to Millennia (US National Research Council, 2011).

  5. 5

    Levy, M. A. & Morel, A. C. in Global Environmental Outlook 5 (eds Ullstein, B. et al.) 3–30 (UNEP, 2012).

    Google Scholar 

  6. 6

    Rosa, E. A. & Dietz, T. Human drivers of national greenhouse-gas emissions. Nature Clim. Change 2, 581–586 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Dietz, T. & Rosa, E. A. Rethinking the environmental impacts of population, affluence and technology. Human Ecol. Rev. 1, 277–300 (1994).

    Google Scholar 

  8. 8

    Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    CAS  Article  Google Scholar 

  9. 9

    What is Social Science? (ESRC, 2013);

  10. 10

    Rosa, E. A., Rudel, T. K., York, R., Jorgenson, A. K. & Dietz, T. in Climate Change and Society: Sociological Perspectives (eds Dunlap, R. E. & Brulle, R.) 32–60 (Oxford Univ. Press, 2015).

    Google Scholar 

  11. 11

    York, R., Rosa, E. A. & Dietz, T. Bridging environmental science with environmental policy: plasticity of population, affluence and technology. Social Sci. Quart. 83, 18–34 (2002).

    Article  Google Scholar 

  12. 12

    Allen, S. et al. Measuring household energy efficiency behaviors with attention to behavioral plasticity in the United States Energy Res. Soc. Sci. 10, 133–140 (2015).

    Article  Google Scholar 

  13. 13

    Jorgenson, A. K. & Clark, B. Assessing the temporal stability of the population/ environment relationship in comparative perspective: a cross-national panel study of carbon dioxide emissions, 1960–2005. Pop. Environ. 32, 27–41 (2010).

    Article  Google Scholar 

  14. 14

    Bryant, J. Theories of fertility decline and the evidence from development indicators. Popul. Dev. Rev. 33, 101–127 (2007).

    Article  Google Scholar 

  15. 15

    Coale, A. J. & Hoover, E. M. Population Growth and Economic Development in Low-Income Countries (Princeton Univ. Press, 1958).

    Google Scholar 

  16. 16

    Dixon-Muller, R. Population Policy & Women's Rights: Transforming Reproductive Choice (Praeger, 1993).

    Google Scholar 

  17. 17

    Population and the American Future (The Center for Research and Population Security, 1972).

  18. 18

    US National Academy of Sciences Rapid Population Growth: Consequences and Policy Implications (Johns Hopkins Univ. Press, 1971).

  19. 19

    Jorgenson, A. K. & Clark, B. Are the economy and the environment decoupling? A comparative international study, 1960–2005. Am. J. Sociol. 118, 1–44 (2012).

    Article  Google Scholar 

  20. 20

    Stiglitz, J., Sen, A. & Fitoussi, J.-P. The Measurement of Economic Performance and Social Progress Revisited. Commission on the Measurement of Economic Performance and Social Progress (OFCE, 2009).

    Google Scholar 

  21. 21

    York, R. Asymmetric effects of economic growth and decline on CO2 emissions. Nature Clim. Change 2, 762–764 (2012).

    Article  Google Scholar 

  22. 22

    Jorgenson, A. K. Economic development and the carbon intensity of human well-being. Nature Clim. Change 4, 186–189 (2014).

    Article  Google Scholar 

  23. 23

    Stern, P. C. et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations. Nature Energy (2016).

  24. 24

    Coe, N. M., Dicken, P. & Hess, M. Global production networks — debates and challenges. J. Econ. Geogr. 8, 267–269 (2008).

    Article  Google Scholar 

  25. 25

    Hess, M. & Yueng, H. W. C. Whither global production networks in economic geography? Past, Present, and Future. Environ. Plann. A 38, 1193–1204 (2006).

    Article  Google Scholar 

  26. 26

    Vandenbergh, M. P. Private environmental governance. Cornell Law Rev. 99, 129–199 (2013).

    Google Scholar 

  27. 27

    Coe, N. M., Hess, M., Yueng, H. W. C., Dicken, P. & Henderson, J. 'Globalizing' regional development: a global production networks perspective. Trans. Inst. Br. Geogr. 29, 468–484 (2004).

    Article  Google Scholar 

  28. 28

    Henderson, J., Dicken, M., Coe, N. M. & Yueng, H. W. C. Global production networks and the analysis of economic development. Rev. Int. Pol. Econ. 9, 436–464 (2002).

    Article  Google Scholar 

  29. 29

    Bridge, G. Global production networks and the extractive sector: governing resource-based development. J. Econ. Geogr. 8, 389–419 (2008).

    Article  Google Scholar 

  30. 30

    Jorgenson, A. K. & Givens, J. in The Routledge International Handbook of Social and Environmental Change (eds Lockie, S., Sonnenfeld, D. A. & Fisher, D.) 31–44 (Routledge, 2014).

    Google Scholar 

  31. 31

    Jorgenson, A. K. The sociology of ecologically unequal exchange and carbon dioxide emissions, 1960–2005. Social Sci. Res. 41, 242–252 (2012).

    Article  Google Scholar 

  32. 32

    Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Stokes, D. E. Pasteur's Quadrant: Basic Science and Technological Innovation (Brookings Institution, 1997).

    Google Scholar 

  34. 34

    Castree, N. et al. Changing the intellectual climate. Nature Clim. Change 4, 763–768 (2014).

    Article  Google Scholar 

  35. 35

    Allcott, H. & Mullainathan, S. Behavior and energy policy. Science 327, 1204–1205 (2010).

    Article  Google Scholar 

  36. 36

    US National Research Council Advancing the Science of Climate Change (National Academies, 2010).

  37. 37

    Brandt, P. et al. A review of transdisciplinary research in sustainability science. Ecol. Econ. 92, 1–15 (2013).

    Article  Google Scholar 

  38. 38

    Goldblatt, D. L. et al. (eds) Tackling Long-Term Global Energy Problems: The Contribution of Social Science (Springer, 2012).

    Google Scholar 

  39. 39

    US National Research Council Restructuring Federal Climate Research to Meet the challenges of Climate Change (National Academies, 2009).

  40. 40

    Sovacool, B. K. Diversity: Energy studies need social science. Nature 511, 529–530 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Sovacool, B. K. What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energy Res. Social Sci. 1, 1–29 (2014).

    Article  Google Scholar 

  42. 42

    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Stern, P. C. A second environmental science: human-environment interactions. Science 260, 1897–1899 (1993).

    CAS  Article  Google Scholar 

  44. 44

    Kates, R. W. et al. Sustainability science. Science 292, 641–642 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Rosa, E. A. & Machlis, G. E. Energetic theories of society: an evaluative review. Sociol. Inq. 53, 152–178 (1983).

    Article  Google Scholar 

  46. 46

    Mazur, A. & Rosa, E. A. Energy and life-style: massive energy consumption may not be necessary to maintain current living standards in America. Science 186, 607–610 (1974).

    CAS  Article  Google Scholar 

  47. 47

    Jorgenson, A. K. Economic development and the carbon intensity of human well-being. Nature Clim. Change 4, 186–189 (2014).

    Article  Google Scholar 

  48. 48

    Steinberger, J. K., Roberts, J. T., Peters, G. P. & Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nature Clim. Change 2, 81–85 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Dietz, T., Rosa, E. A. & York, R. Environmentally efficient well-being: rethinking sustainability as the relationship between human well-being and environmental impacts. Human Ecol. Rev. 16, 113–122 (2009).

    Google Scholar 

  50. 50

    Cramer, J. C. et al. Structural-behavioral determinants of residential energy use: summer electricity use in Davis. Energy 9, 207–216 (1984).

    Article  Google Scholar 

  51. 51

    Kempton, W., Harris, C., Keith, J. & Weihl, J. Do customers know 'what works' in energy conservation? Marriage Fam. Rev. 9, 115–133 (1985).

    Article  Google Scholar 

  52. 52

    US National Research Council Energy Use: The Human Dimension (eds Stern, P. C. & Aronson, E.) (WH Freeman, 1984).

  53. 53

    Vine, E. L. Solarizing America: The Davis Experience (Conference on Alternative State and Local Policies, Energy Project, 1981).

    Google Scholar 

  54. 54

    US National Research Council Global Environmental Change: Understanding the Human Dimensions (eds Stern, P. C., Young, O. R. & Druckman, D.)(National Academy, 1992).

  55. 55

    US National Research Council Adapting to the Impacts of Climate Change (National Academies, 2010).

  56. 56

    Hess, D. J., Mai, Q. D. & Brown, K. P. Red states, green laws: ideology and renewable energy legislation in the United States. Energy Res. Soc. Sci. 11, 19–28 (2016).

    Article  Google Scholar 

  57. 57

    Fischhoff, B. The realities of risk-cost-benefit analysis. Science 350, 527 (2015).

    CAS  Article  Google Scholar 

  58. 58

    Klinke, A. & Renn, O. Systemic risks as challenge for policy making in risk governance. Qual. Soc. Res. 7, 33 (2006).

    Google Scholar 

  59. 59

    Sidortsov, R. Reinventing rules for environmental risk governance in the energy sector. Energy Res. Soc. Sci. 1, 171–182 (2014).

    Article  Google Scholar 

  60. 60

    Sovacool, B. K. & Saunders, H. Competing policy packages and the complexity of energy security. Energy 67, 641–651 (2014).

    Article  Google Scholar 

  61. 61

    Wong-Parodi, G., Krishnamurti, T., Davis, A., Schwartz, D. & Fischoff, B. A decision science approach for integrating social science in climate and energy solutions. Nature Clim. Change (2016).

  62. 62

    Sovacool, B. K., Heffron, R. J., McCauley, D. & Goldthau, A. Energy decisions reframed as justice and ethical concerns. Nature Energy (2016).

  63. 63

    Bidwell, D. Thinking through participation in renewable energy decisions. Nature Energy (2016).

  64. 64

    Dietz, T., Rosa, E. A. & York, R in Human Footprints on the Global Environment: Threats to Sustainability (eds Rosa, E. A., Diekmann, A., Dietz, T. & Jaeger, C.) 83–134 (MIT Press, 2010).

    Google Scholar 

  65. 65

    Henry, A. D. & Vollan, B. Networks and the challenge of sustainable development. Annu. Rev. Environ. Resour. 39, 583–610 (2014).

    Article  Google Scholar 

  66. 66

    Frank, K. A. in Social Networks and Natural Resource Management: Uncovering the Social Fabric of Environmental Governance (eds Bodin, Ö. & Prell, C.) 180–205 (Cambridge Univ. Press, 2011).

    Google Scholar 

  67. 67

    McCright, A. M., Dunlap, R. E. & Marquart-Pyatt, S. T. Environ. Pol. 25, 338–358 (2016).

    Article  Google Scholar 

  68. 68

    US National Research Council Public Participation in Environmental Assessment and Decision Making (eds Stern, P. C. & Dietz, T.) (National Academies, 2008).

  69. 69

    Schot, J., Kanger, L. & Verbong, G. The roles of users in shaping transitions to new energy systems. Nature Energy (2016).

  70. 70

    Shwom, R. L. A middle range theorization of energy politics: the US struggle for energy efficient appliances. Environ. Pol. 20, 705–726 (2011).

    Article  Google Scholar 

  71. 71

    Prakash, A. & Potoski, M. (eds) The Voluntary Environmentalists: Green Clubs, ISO 14001, and Voluntary Environmental Regulations (Cambridge Univ. Press, 2006).

    Google Scholar 

  72. 72

    Vandenbergh, M. P. & Gilligan, J. M. Beyond gridlock. Columbia Environ. Law J. 40, 217–303 (2015).

    Google Scholar 

  73. 73

    Hensel, N. D. in New Security Frontiers: Critical Energy and the Resource Challenge (ed. Krishna-Hensel, S. F.) 113–138 (Ashgate, 2012).

    Google Scholar 

  74. 74

    Haas, R. et al. How to promote renewable energy systems successfully and effectively Energy Pol. 32, 833–839 (2004).

    Article  Google Scholar 

  75. 75

    Loiter, J. M. & Nornerg-Bohm, V. Technology policy and renewable energy: public roles in the development of new energy technologies. Energy Pol. 27, 85–97 (1999).

    Article  Google Scholar 

  76. 76

    Espey, S. Renewables portfolio standard: a means for trade with electricity from renewable energy sources? Energy Pol. 29, 557–566 (2001).

    Article  Google Scholar 

  77. 77

    Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Change 20, 550–557 (2010).

    Article  Google Scholar 

  78. 78

    Shewmake, S., Cohen, M. A., Stern, P. C. & Vandenbergh, M. P. Carbon triage: a strategy for developing a viable carbon labeling system. SSRN (2013).

  79. 79

    Steen-Olsen, K. & Hertwich, E. G. in Handbook of Research on Sustainable Consumption (eds Reisch, L. A. & Thøgersen, J.) 131–144 (Edward Elgar, 2015).

    Google Scholar 

  80. 80

    Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).

    CAS  Article  Google Scholar 

  81. 81

    Victor, D. G. & Keohane, R. O. Cooperation and discord in global climate policy. Nature Clim. Change (2016).

  82. 82

    Rai, V. & Henry, A. D. Agent-based modelling of consumer energy choices. Nature Clim. Change (2016).

  83. 83

    Geels, F. W., Berkhout, F. & van Vuuren, D. P. Bridging analytical approaches for low-carbon transitions Nature Clim. Change (2016).

  84. 84

    Stern, P. C. Individual and household interactions with energy systems: toward integrated understanding. Energy Res. Soc. Sci. 1, 41–48 (2014).

    Article  Google Scholar 

  85. 85

    Deline, M. B. Energizing organizational research: advancing the energy field with group concepts and theories. Energy Res. Soc. Sci. 8, 207–221 (2015).

    Article  Google Scholar 

  86. 86

    York, R. Do alternative energy sources displace fossil fuels? Nature Clim. Change 2, 441–443 (2012).

    Article  Google Scholar 

  87. 87

    International Energy Agency World Energy Outlook (OECD, 2012).

  88. 88

    Evans-Pritchard, A. Oil and gas investment in the US has soared to $200b. Daily Telegraph (10 July 2014).

  89. 89

    International Energy Agency Special Report: World Energy Investment Outlook (OECD, 2014);

  90. 90

    Stern, P. C. Contributions of psychology to limiting climate change. Am. Psychol. 66, 303–314 (2011).

    Article  Google Scholar 

  91. 91

    The White House Executive Order — Using Behavioral Science Insights to Better Serve the American People (Office of the Press Secretary, 2015);

  92. 92

    Dietz, T. Bringing values and deliberation to science communication. Proc. Natl Acad. Sci. USA 110, 14081–14087 (2013).

    CAS  Article  Google Scholar 

  93. 93

    Sovacool, B. K., Brown, M. A. & Valentine, S. V. Fact and Fiction in Global Energy Policy: Fifteen Contentious Questions (John Hopkins Univ. Press, 2016).

    Google Scholar 

  94. 94

    Sovacool, B. K. et al. Integrating social science in energy research. Energy Res. Soc. Sci. 6, 95–99 (2015).

    Article  Google Scholar 

  95. 95

    Spreng, D. Transdisciplinary energy research — reflecting the context. Energy Res. Soc. Sci. 1, 65–73 (2014).

    Article  Google Scholar 

  96. 96

    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).

    Google Scholar 

  97. 97

    Stern, P. C. Design principles for global commons: natural resources and emerging technologies. Int. J. Commons 5, 213–232 (2011).

    Article  Google Scholar 

  98. 98

    Sovacool, B. K. Design principles for renewable energy programs in developing countries. Energy Environ. Sci. 5, 9157–9162 (2012).

    Article  Google Scholar 

  99. 99

    Gaffigan, M. E. Advanced Energy Technologies: Budget Trends and Challenges for DOE's Energy R&D Program (US Government Accountability Office, 2008).

    Google Scholar 

  100. 100

    US National Research Council Climate and Social Stress: Implications for Security Analysis (eds Steinbruner, J. D., Stern, P. C. & Husbands, J. L.) (National Academies, 2013).

  101. 101

    Renewables 2015 Global Status Report (REN21 Secretariat, 2015);

Download references


Contributions from B. K. S. were supported in part by the Research Councils UK's (RCUK) Energy Programme Grant EP/K011790/1 and the Danish Council for Independent Research (DFF) Sapere Aude Grant 4182-00033B. Contributions by T. D. were supported in part by AgBioResearch of Michigan State University. Except as noted in the references, the views expressed in this paper are those of the authors and not of the National Acadamies of Sciences, Engineering and Medicine, nor of the RCUK Energy Programme or the DFF.

Author information



Corresponding author

Correspondence to Benjamin K. Sovacool.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stern, P., Sovacool, B. & Dietz, T. Towards a science of climate and energy choices. Nature Clim Change 6, 547–555 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing