Cooling of US Midwest summer temperature extremes from cropland intensification


High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we identify centennial trends towards more favourable growing conditions in the US Midwest, including cooler summer temperature extremes and increased precipitation, and investigate the origins of these shifts. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that agricultural intensification increases the potential for evapotranspiration, leading to cooler temperatures and contributing to increased precipitation. The tendency for greater evapotranspiration on hotter days is consistent with our finding that cooling trends are greatest for the highest temperature percentiles. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Peak rates of summer chlorophyll fluorescence49 in the US Midwest are the highest observed anywhere on the planet.
Figure 2: The centennial trend towards cooler daily maximum temperatures during the summer in the Midwest is strongest for the hottest days of the year, and is accompanied by elevated precipitation across much of the region.
Figure 3: Strong correspondence is found between the cooling pattern and cropland intensification, whereas increased irrigation correlates with cooling over a subset of the area and land cover change to cropland exhibits no association.
Figure 4: Rainfed areas show reductions in extreme temperatures only when sufficient moisture is available, increasing the temperature difference between drought and non-drought years, whereas irrigated areas are cooler regardless of drought status.


  1. 1

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 1–9 (2011).

    Article  CAS  Google Scholar 

  3. 3

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009)10.1073/pnas.0906865106.

    Article  Google Scholar 

  4. 4

    Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nature Clim. Change 3, 68–72 (2012).

    Article  Google Scholar 

  5. 5

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nature Clim. Change 3, 1–5 (2013).

    Article  Google Scholar 

  6. 6

    Twine, T. E., Kucharik, C. J. & Foley, J. A. Effects of land cover change on the energy and water balance of the Mississippi River basin. J. Hydrometeorol. 5, 640–655 (2004).

    Article  Google Scholar 

  7. 7

    Oleson, K. W., Bonan, G. B., Levis, S. & Vertenstein, M. Effects of land use change on North American climate: Impact of surface datasets and model biogeophysics. Clim. Dynam. 23, 117–132 (2004).

    Article  Google Scholar 

  8. 8

    Bonan, G. B. Frost followed the plow: Impacts of deforestation on the climate of the United States. Ecol. Appl. 9, 1305–1315 (1999).

    Article  Google Scholar 

  9. 9

    Davin, E. L., Seneviratne, S. I., Ciais, P., Olioso, A. & Want, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl Acad. Sci. USA 111, 9757–9761 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Clim. Change 4, 389–393 (2014).

    Article  Google Scholar 

  11. 11

    Jeong, S. J. et al. Effects of double cropping on summer climate of the North China Plain and neighbouring regions. Nature Clim. Change 4, 615–619 (2014).

    Article  Google Scholar 

  12. 12

    Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 35, L09705 (2008).

    Article  Google Scholar 

  13. 13

    Harding, K. J. & Snyder, P. K. Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeorol. 13, 1667–1686 (2012).

    Article  Google Scholar 

  14. 14

    Mahmood, R. et al. Impacts of irrigation on 20th century temperature in the northern Great Plains. Glob. Planet. Change 54, 1–18 (2006).

    Article  Google Scholar 

  15. 15

    Adegoke, J. O., Pielke, R. A. Sr, Eastman, J., Mahmood, R. & Hubbard, K. G. Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the US High Plains. Mon. Weath. Rev. 131, 556–564 (2003).

    Article  Google Scholar 

  16. 16

    Lu, Y., Jin, J. & Kueppers, L. M. Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model. Clim. Dynam. 117, 1–17 (2015).

    Google Scholar 

  17. 17

    Betts, A. K., Desjardins, R., Worth, D. & Cerkowniak, D. Impact of land use change on the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. 118, 11996–12011 (2013).

    Google Scholar 

  18. 18

    Fall, S. et al. Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol. 30, 1980–1993 (2010).

    Article  Google Scholar 

  19. 19

    Pielke, R. A. Sr et al. An overview of regional land-use and land-cover impacts on rainfall. Tellus B 59B, 587–601 (2007).

    Article  Google Scholar 

  20. 20

    Pielke, R. A. Sr et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Clim. Change 2, 828–850 (2011).

    Article  Google Scholar 

  21. 21

    Leibensperger, E. M. et al. Climatic effects of 1950–2050 changes in US anthropogenic aerosols–Part 1: Aerosol trends and radiative forcing. Atmos. Chem. Phys. 12, 3333–3348 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Leibensperger, E. M. et al. Climatic effects of 1950–2050 changes in US anthropogenic aerosols–Part 2: Climate response. Atmos. Chem. Phys. 12, 3349–3362 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Portmann, R. W., Solomon, S. & Hegerl, G. C. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl Acad. Sci. USA 106, 7324–7329 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Robinson, W. A., Reudy, R. & Hansen, J. E. General circulation model simulations of recent cooling in the eastern United States. J. Geophys. Res. 107, 4748 (2002).

    Article  Google Scholar 

  25. 25

    Meehl, G. A., Arblaster, J. M. & Branstator, G. Mechanisms contributing to the warming hole and the consequent US east–west differential of heat extremes. J. Clim. 25, 6394–6408 (2012).

    Article  Google Scholar 

  26. 26

    Goldstein, A. H., Koven, C. D., Heald, C. L. & Fung, I. Y. Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl Acad. Sci. USA 106, 8835–8840 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Kunkel, K. E., Liang, X.-Z., Zhu, J. & Lin, Y. Can CGCMs simulate the twentieth-century ‘warming hole’ in the central United States? J. Clim. 19, 4137–4153 (2006).

    Article  Google Scholar 

  28. 28

    DeAngelis, A. et al. Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res. 115, 1–14 (2010).

    Article  Google Scholar 

  29. 29

    Franks, P. J. & Farquhar, G. D. A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ. 22, 1337–1349 (1999).

    Article  Google Scholar 

  30. 30

    Gilbert, M. E., Holbrook, N. M., Zwieniecki, M. A., Sadok, W. & Sinclair, T. R. Field confirmation of genetic variation in soybean transpiration response to vapor pressure deficit and photosynthetic compensation. Field Crops Res. 124, 85–92 (2011).

    Article  Google Scholar 

  31. 31

    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Jones, J. W., Zur, B. & Bennett, J. M. Interactive effects of water and nitrogen stresses on carbon and water vapor exchange of corn canopies. Agric. For. Meteorol. 38, 113–126 (1986).

    Article  Google Scholar 

  33. 33

    Chapin, F. S. III, Walter, C. H. & Clarkson, D. T. Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta 173, 352–366 (1988).

    CAS  Article  Google Scholar 

  34. 34

    Rudnick, D. R. & Irmak, S. Impact of nitrogen fertilizer on maize evapotranspiration crop coefficients under fully irrigated, limited irrigation, and rainfed settings. J. Irrig. Drain. Eng. 140, 1–15 (2014).

    Article  Google Scholar 

  35. 35

    Jiang, X. et al. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agric. Water Manage. 142, 135–143 (2014).

    Article  Google Scholar 

  36. 36

    Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements (Food and Agriculture Organization of the United Nations, 1998).

    Google Scholar 

  37. 37

    USDA NASS Usual Planting and Harvest Dates for US Field Crops 1–51 (United States Department of Agriculture, 1997).

    Google Scholar 

  38. 38

    Gallaher, R. N. Soil moisture conservation and yield of crops no-till planted in rye. Soil Sci. Soc. Am. J. 41, 145–147 (1977).

    Article  Google Scholar 

  39. 39

    Brown, P. J. & DeGaetano, A. T. Trends in US surface humidity, 1930–2010. J. Appl. Meteorol. Climatol. 52, 147–163 (2013).

    Article  Google Scholar 

  40. 40

    Sandstrom, M. A., Lauritsen, R. G. & Changnon, D. A central-US summer extreme dew-point climatology (1949–2000). Phys. Geogr. 25, 191–207 (2004).

    Article  Google Scholar 

  41. 41

    Milly, P. & Dunne, K. A. Trends in evaporation and surface cooling in the Mississippi River basin. Geophys. Res. Lett. 28, 1219–1222 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Bonan, G. B. Observational evidence for reduction of daily maximum temperature by croplands in the Midwest United States. J. Clim. 14, 2430–2442 (2001).

    Article  Google Scholar 

  43. 43

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Experim. Bot. 60, 2859–2876 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Raddatz, R. L. Anthropogenic vegetation transformation and the potential for deep convection on the Canadian prairies. Can. J. Soil Sci. 78, 657–666 (1998).

    Article  Google Scholar 

  46. 46

    Harding, K. J. & Snyder, P. K. Modeling the atmospheric response to irrigation in the Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeorol. 13, 1687–1703 (2012).

    Article  Google Scholar 

  47. 47

    Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 116, D12115 (2011).

    Article  Google Scholar 

  48. 48

    Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. Discuss. 6, 3883–3930 (2013).

    Article  Google Scholar 

  50. 50

    Cook, B. I., Miller, R. L. & Seager, R. Amplification of the North American ‘Dust Bowl’ drought through human-induced land degradation. Proc. Natl Acad. Sci. USA 106, 4997–5001 (2009).

    CAS  Article  Google Scholar 

  51. 51

    USDA NASS National Agricultural Statistics Service (United States Department of Agriculture, 2014);

    Google Scholar 

  52. 52

    USDA ERS Weights, Measures, and Conversion Factors for Agricultural Commodities and Their Products 1–77 (United States Department of Agriculture, 1992).

    Google Scholar 

  53. 53

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  CAS  Google Scholar 

  54. 54

    Lobell, D. B. et al. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98. Glob. Change Biol. 8, 722–735 (2002).

    Article  Google Scholar 

  55. 55

    Hay, R. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 126, 197–216 (1995).

    Article  Google Scholar 

  56. 56

    Riggs, T. J. et al. Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. J. Agric. Sci. 97, 599–610 (1981).

    Article  Google Scholar 

  57. 57

    Census of Agriculture Historical Archive (United States Department of Agriculture, 2014);

  58. 58

    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).

    Article  Google Scholar 

  59. 59

    Rhines, A., Tingley, M. P., McKinnon, K. A. & Huybers, P. Decoding the precision of historical temperature observations. Q. J. R. Meteorol. Soc. 1–11 (2015).

  60. 60

    Koenker, R. & Bassett, G. Jr Regression quantiles. Econometrica 46, 33–50 (1978).

    Article  Google Scholar 

Download references


We thank F. Rockwell, T. Sinclair, L. Mickley, K. Harding, T. Twine, P. Snyder and C. O’Connell for helpful discussions. We thank N. Ramankutty for sharing the updated historical cropland data set. This work was supported by the National Science Foundation (Hydrologic Sciences grant 1521210) and by a fellowship from the Harvard University Center for the Environment to N.D.M.

Author information




N.D.M., P.H., N.M.H. and E.E.B. conceived of the study. A.R., K.A.M., M.T. and P.H. developed the precision-decoding necessary to enable quantile regression. N.D.M. led data analysis, with assistance from P.H., E.E.B. and A.R. N.D.M., P.H. and N.M.H. led writing and interpretation of the results, with assistance from E.E.B., A.R., K.A.M. and M.T.

Corresponding author

Correspondence to Nathaniel D. Mueller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mueller, N., Butler, E., McKinnon, K. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nature Clim Change 6, 317–322 (2016).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing