Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence

Abstract

Rising sea temperatures are likely to increase the frequency of disease outbreaks affecting reef-building corals through impacts on coral hosts and pathogens. We present and compare climate model projections of temperature conditions that will increase coral susceptibility to disease, pathogen abundance and pathogen virulence. Both moderate (RCP 4.5) and fossil fuel aggressive (RCP 8.5) emissions scenarios are examined. We also compare projections for the onset of disease-conducive conditions and severe annual coral bleaching, and produce a disease risk summary that combines climate stress with stress caused by local human activities. There is great spatial variation in the projections, both among and within the major ocean basins, in conditions favouring disease development. Our results indicate that disease is as likely to cause coral mortality as bleaching in the coming decades. These projections identify priority locations to reduce stress caused by local human activities and test management interventions to reduce disease impacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Projections of temperature conditions that increase host susceptibility, pathogen abundance and pathogen virulence under RCPs 8.5 and 4.5.
Figure 2: Histograms and model means and spreads for the projections of temperature conditions under RCPs 8.5 and 4.5.
Figure 3: Summaries of projections for disease and bleaching conditions under RCP 8.5.
Figure 4: Anthropogenic stress patterns and disease risk based on exposure to anthropogenic and climate stress.

References

  1. 1

    National Climatic Data Center State of the Climate (US National Oceanic and Atmospheric Administration, 2014); http://www.ncdc.noaa.gov/sotc/global/2014/8

  2. 2

    Slezak, M. Oceans get into hot water. New Sci. 224, 8–9 (2014).

    Google Scholar 

  3. 3

    Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl Acad. Sci. USA 111, 17278–17283 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Groner, M. L. et al. Host demography influences the prevalence and severity of eelgrass wasting disease. Dis. Aquat. Org. 108, 165–175 (2014).

    Article  Google Scholar 

  5. 5

    Savary, S., Nelson, A., Sparks, A. H. & Willocquet, L. International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis. 95, 1204–1216 (2011).

    Article  Google Scholar 

  6. 6

    Garrett, K. A., Dendy, S. P. & Frank, E. E. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 341, 514–519 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Rogers, D. J. & Randolph, S. E. The global spread of malaria in a future, warmer world. Science 289, 1763–1766 (2000).

    CAS  Article  Google Scholar 

  9. 9

    van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: Analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).

    Article  Google Scholar 

  10. 10

    Béguin, A. et al. The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob. Environ. Change 21, 1209–1214 (2011).

    Article  Google Scholar 

  11. 11

    Ruiz-Moreno, D., Vargas, I. S., Olson, K. E. & Harrington, L. C. Modeling dynamic introduction of Chikungunya virus in the United States. PLoS Negl. Trop. Dis. 6, e1918 (2012).

    Article  Google Scholar 

  12. 12

    Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).

    Article  Google Scholar 

  13. 13

    Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A. & Willis, B. L. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).

    Article  Google Scholar 

  14. 14

    Miller, J. et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28, 925–937 (2009).

    Article  Google Scholar 

  15. 15

    Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: When does the host matter the most? Ecology 90, 912–920 (2009).

    Article  Google Scholar 

  16. 16

    Harvell, D., Jordán-Dahlgren, E. & Merkel, S. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20, 172–195 (2007).

    Article  Google Scholar 

  17. 17

    Sato, Y., Bourne, D. G. & Willis, B. L. Dynamics of seasonal outbreaks of black band disease in an assemblage of Montipora species at Pelorus Island (Great Barrier Reef, Australia). Proc. Biol. Sci. 276, 2795–2803 (2009).

    Article  Google Scholar 

  18. 18

    Riegl, B. Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Mar. Biol. 140, 29–40 (2002).

    Article  Google Scholar 

  19. 19

    Cervino, J. M. et al. Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl. Environ. Microbiol. 70, 6855–6864 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Heron, S. F. et al. Summer hot snaps and winter conditions: Modelling white syndrome outbreaks on Great Barrier Reef Corals. PLoS ONE 5, e12210 (2010).

    Article  Google Scholar 

  21. 21

    Maynard, J. A. et al. Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef. Coral Reefs 30, 485–495 (2010).

    Article  Google Scholar 

  22. 22

    van Vuuren, D. P. et al. The representative concentration pathways: An overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  23. 23

    van Hooidonk, R. J., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Change Biol. 20, 103–112 (2014).

    Article  Google Scholar 

  24. 24

    Aeby, G. S. et al. Patterns of Coral Disease across the Hawaiian Archipelago: Relating disease to environment. PLoS ONE 6, e20370 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Lamb, J. B. & Willis, B. L. Using coral disease prevalence to assess the effects of concentrating tourism activities on offshore reefs in a tropical marine park. Conserv. Biol. 25, 1044–1052 (2011).

    Article  Google Scholar 

  26. 26

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2013).

    Article  Google Scholar 

  27. 27

    Pollock, F. J. et al. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS ONE 9, e102498 (2014).

    Article  Google Scholar 

  28. 28

    Burke, L. M., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resources Institute, 2011).

    Google Scholar 

  29. 29

    Kline, D. I., Kuntz, N. M. & Breitbart, M. Role of elevated organic carbon levels and microbial activity in coral mortality. Mar. Ecol. 314, 119–125 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).

    Article  Google Scholar 

  31. 31

    Haapkylä, J. et al. Seasonal rainfall and Runoff promote coral disease on an inshore reef. PLoS ONE 6, e16893 (2011).

    Article  Google Scholar 

  32. 32

    Sutherland, K. P., Shaban, S., Joyner, J. L., Porter, J. W. & Lipp, E. K. Human pathogen shown to cause disease in the threatened Eklhorn Coral Acropora palmata. PLoS ONE 6, e23468 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Lamb, J. B., True, J. D., Piromvaragorn, S. & Willis, B. L. Scuba diving damage and intensity of tourist activities increases coral disease prevalence. Biol. Conserv. 178, 88–96 (2014).

    Article  Google Scholar 

  34. 34

    Hawkins, J. P. et al. Effects of recreational scuba diving on Caribbean coral and fish communities. Conserv. Biol. 13, 888–897 (1999).

    Article  Google Scholar 

  35. 35

    Miller, M. W. & Williams, D. E. Coral disease outbreak at Navassa, a remote Caribbean island. Coral Reefs 26, 97–101 (2007).

    Article  Google Scholar 

  36. 36

    Bruckner, A. W. & Bruckner, R. J. Outbreak of coral disease in Puerto Rico. Coral Reefs 16, 260 (1997).

    Article  Google Scholar 

  37. 37

    Nicolet, K., Hoogenboom, M., Gardiner, N., Pratchett, M. & Willis, B. The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great Barrier Reef. Coral Reefs 32, 585–595 (2013).

    Article  Google Scholar 

  38. 38

    Katz, S. M., Pollock, F. J., Bourne, D. G. & Willis, B. L. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 33, 705–716 (2014).

    Article  Google Scholar 

  39. 39

    Aeby, G. S. & Santavy, D. L. Factors affecting susceptibility of the coral Montastraea faveolata to black-band disease. Mar. Ecol. Prog. Ser. 318, 103–110 (2006).

    Article  Google Scholar 

  40. 40

    Casey, J. M., Ainsworth, T. D., Choat, J. H. & Connolly, S. R. Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease. Proc. R. Soc. B 281, 20141032 (2014).

    Article  Google Scholar 

  41. 41

    Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Clim. Change 3, 369–373 (2012).

    Article  Google Scholar 

  42. 42

    van Hooidonk, R. & Huber, M. Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions. Coral Reefs 31, 121–131 (2012).

    Article  Google Scholar 

  43. 43

    Cróquer, A. & Weil, E. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Org. 87, 33–43 (2009).

    Article  Google Scholar 

  44. 44

    Aeby, G. S., Ross, M., Williams, G. J., Lewis, T. D. & Work, T. M. Disease dynamics of Montipora white syndrome within Kaneohe Bay, Oahu, Hawaii: Distribution, seasonality, virulence, and transmissibility. Dis. Aquat. Org. 91, 1–8 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Beeden, R., Maynard, J. A., Marshall, P. A., Heron, S. F. & Willis, B. L. A framework for responding to coral disease outbreaks that facilitates adaptive management. Environ. Manag. 49, 1–13 (2012).

    Article  Google Scholar 

  46. 46

    Maynard, J. A. et al. A strategic framework for responding to coral bleaching events in a changing climate. Environ. Manag. 44, 1–11 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Williams, G. J., Aeby, G. S., Cowie, R. O. & Davy, S. K. Predictive modeling of coral disease distribution within a reef system. PLoS ONE 5, e9264 (2010).

    Article  Google Scholar 

  48. 48

    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nature Clim. Change 3, 1–4 (2013).

    Article  Google Scholar 

  49. 49

    Miller, J., Waara, R., Muller, E. & Rogers, C. Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs 25, 418 (2006).

    Article  Google Scholar 

  50. 50

    Brandt, M. & McManus, J. Disease incidence is related to bleaching extent in reef-building corals. Ecology 90, 2859–2867 (2009).

    Article  Google Scholar 

  51. 51

    Muller, E. M., Rogers, C. S., Spitzack, A. S. & VanWoesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191–195 (2008).

    Article  Google Scholar 

  52. 52

    van Hooidonk, R. & Huber, M. Quantifying the quality of coral bleaching predictions. Coral Reefs 28, 579–587 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This study was primarily funded by a grant from the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office prepared by S.F.H. and awarded to C.D.H. and C.M.E. (NA13OAR4310127). Support was also provided by a National Science Foundation Research Coordination Network grant to C.D.H., in-kind support from NOAA Atlantic and Oceanographic Meteorological Laboratory, as well as grants from the NOAA Coral Reef Conservation Program, the US National Fish and Wildlife Foundation, the Pacific Islands Climate Change Cooperative, the European Research Commission, and The Nature Conservancy. Use of data from ref. 28 benefited from discussions with L. Burke and K. Reytar. Figures were collaboratively developed with D. Tracey. The contents in this manuscript are solely the opinions of the authors and do not constitute a statement of policy, decision or position on behalf of the NOAA or the US Government.

Author information

Affiliations

Authors

Contributions

J.M., C.D.H., C.M.E., S.F.H., R.v.H., B.W., M.G., J.L. and G.W. designed the study. R.v.H. compiled and analysed the climate model data in collaboration with J.M. M.P. conducted the spatial analysis required to build the maps on which Figs 3 and 4 and Supplementary Figs 1 and 2 are based, in collaboration with J.M. J.M., C.D.H., C.M.E. and B.W. wrote the manuscript with assistance from all other authors.

Corresponding author

Correspondence to Jeffrey Maynard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maynard, J., van Hooidonk, R., Eakin, C. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Clim Change 5, 688–694 (2015). https://doi.org/10.1038/nclimate2625

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing