Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fossil fuels in a trillion tonne world


The useful energy services and energy density value of fossil carbon fuels could be retained for longer timescales into the future if their combustion is balanced by CO2 recapture and storage. We assess the global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores. A hierarchy of value for extraction-to-storage pairings is proposed, which is augmented by classification of CO2 containment as temporary (<1,000 yr) or permanent (>100,000 yr). Using temporary stores is inefficient and defers an intergenerational problem. Permanent storage capacity is adequate to technically match current fossil fuel reserves. However, rates of storage creation cannot balance current and expected rates of fossil fuel extraction and CO2 consequences. Extraction of conventional natural gas is uniquely holistic because it creates the capacity to re-inject an equivalent tonnage of carbon for storage into the same reservoir and can re-use gas-extraction infrastructure for storage. By contrast, balancing the extraction of coal, oil, biomass and unconventional fossil fuels requires the engineering and validation of additional carbon storage. Such storage is, so far, unproven in sufficiency.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sizes of fossil carbon supply (reserves and resources) and potential carbon stores divided between temporary (≤1,000 yr) and permanent (geological timescales ≥ 100,000 yr) in Gt CO2.


  1. IPCC Summary for Policymakers in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  2. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    CAS  Article  Google Scholar 

  3. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) (Cambridge Univ. Press, 2013).

  4. Statistical Review of World Energy 2012 (BP, 2012).

  5. Reserves, Resources and Availability of Energy Resources (BGR, 2012).

  6. Unburnable Carbon (Carbon Tracker and Grantham Institute, 2013).

  7. Global Research (HSBC, 2013).

  8. Energy and Carbon - Managing the Risks (ExxonMobil, 2014).

  9. Letter on the Issue of “Stranded Assets” (Royal Dutch Shell, 2014).

  10. IPCC Summary for Policymakers in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  11. Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Article  Google Scholar 

  12. Sathaye, K. J., Hesse, M. A., Cassidy, M. & Stockli, D. F. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. Proc. Natl Acad. Sci. USA 111, 15332–15337 (2014).

    CAS  Article  Google Scholar 

  13. Goldberg, D. S., Kent, D. V. & Olsen, P. E. Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts. Proc. Natl Acad. Sci. USA 107, 1327–1332 (2010).

    CAS  Article  Google Scholar 

  14. House, K. Z., Schrag, D. P., Harvey, C. F. & Lackner, K. S. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl Acad. Sci. USA 103, 12291–12295 (2006).

    CAS  Article  Google Scholar 

  15. Orr, F. M. Storage of carbon dioxide in geologic formations. J. Petrol. Technol. 54, 90–97 (2004).

    Article  Google Scholar 

  16. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. & Haszeldine, R. S. Last chance for carbon capture and storage. Nature Clim. Change 3, 105–111 (2012).

    Article  Google Scholar 

  17. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations (US National Energy Technology Laboratory, 2013).

  18. Elliot, T. & Celia, M. Potential restrictions for CO2 sequestration sites due to shale and tight gas production. Environ. Sci. Technol. 46, 4223–4227 (2012).

    CAS  Article  Google Scholar 

  19. Schicks, J. M. et al. New approaches for the production of hydrocarbons from hydrate bearing sediments. Energies 4, 151–172 (2011).

    CAS  Article  Google Scholar 

  20. Global CCS Projects Map (Scottish Carbon Capture and Storage, 2014);

  21. Bradshaw, J. et al. CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Con. 1, 62–68 (2007).

    CAS  Article  Google Scholar 

  22. CO2 Stored (British Geological Survey & The Crown Estate, 2013);

  23. Compiled CO2 Atlas for the Norwegian Continental Shelf (Norwegian Petroleum Directive, 2014).

  24. Stewart, R. J., Scott, V., Haszeldine, R. S., Ainger, D. & Argent, S. The feasibility of a European-wide integrated CO2 transport network. Greenh. Gases Sci. Technol. 4, 481–494 (2014).

    Article  Google Scholar 

  25. National Assessment of Geologic Carbon Dioxide Storage Resources (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013).

  26. North American Carbon Storage Atlas (US National Energy Technology Laboratory, 2012).

  27. IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  28. Thibeau, S. & Mucha, V. Have we overestimated saline aquifer CO2 storage capacities? Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 66, 81–92 (2011).

    CAS  Article  Google Scholar 

  29. Cavanagh, A. & Wildgust, N. Pressurization and brine displacement issues for deep saline formation CO2 storage. Energy Procedia 4, 4814–4821 (2011).

    CAS  Article  Google Scholar 

  30. Hansen, O. et al. Snøhvit: The history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energ. Procedia 37, 3565–3573 (2013).

    CAS  Article  Google Scholar 

  31. McGrail, B. P. et al. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. Sol. Ea. 111, B12201 (2006).

    Article  Google Scholar 

  32. Goldberg, D. S., Takahashi, T. & Slagle, A. L. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl Acad. Sci. USA 105, 9920–9925 (2008).

    CAS  Article  Google Scholar 

  33. Moosdorf, N., Renforth, P. & Hartmann, J. Carbon dioxide efficiency of terrestrial enhanced weathering. Environ. Sci. Technol. 48, 4809–4816 (2014).

    CAS  Article  Google Scholar 

  34. Technology Roadmap: Carbon Capture and Storage (IEA, 2009);

  35. Hammond, G. P., Howard, H. R. & Jones, C. I. The energy and environmental implications of UK more electric transition pathways: A whole systems perspective. Energ. Policy 52, 103–116 (2012).

    Article  Google Scholar 

  36. Economic Analysis of Methane Emission Reduction Opportunities in the U. S. Onshore Oil and Natural Gas Industries (ICF International, 2014).

  37. Hyder, Z., Ripepi, N. S. & Karmis, M. E. A life cycle comparison of greenhouse emissions for power generation from coal mining and underground coal gasification. Mitig. Adapt. Strategies Glob. Chang. (2014).

  38. Roddy, D. J. & Younger, P. L. Underground coal gasification with CCS: A pathway to decarbonising industry. Energ. Environ. Sci. 3, 400–407 (2010).

    CAS  Article  Google Scholar 

  39. Keller, D. P., Feng, E. Y. & Oschlies, A. Potential climate engineering effectiveness and side effects during a high CO2-emissions scenario: A comparitive assessment. Nature Commun. 5, 3304 (2014).

    Article  Google Scholar 

  40. Sohi, S. P. Carbon storage with benefits. Science 338, 1034–1035 (2012).

    CAS  Article  Google Scholar 

  41. Khatiwala, S., Primeau, F. & Holzer, M. Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett. 325, 116–125 (2012).

    Article  Google Scholar 

  42. World Energy Outlook (International Energy Agency, 2012).

  43. Dooley, J. J. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st century: A meta-analysis of the literature. Energ. Procedia 37, 5141–5150 (2013).

    Article  Google Scholar 

  44. Szulczewski, M. L., MacMinn, C. W., Herzog, H. J. & Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109, 5185–5189 (2012).

    CAS  Article  Google Scholar 

  45. Allen, M. Climate change: let's bury the CO2 problem. The Guardian (5 June 2013);

    Google Scholar 

  46. Haszeldine, R. S. Deep geological CO2 storage: Principles reviewed, and prospecting for bio-energy disposal sites. Mitig. Adapt. Strategies Glob. Chang. 11, 369–393 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations



V.S. was the lead author. V.S., R.S.H., S.F.B.T. and A.O conceived the study and contributed to the text.

Corresponding author

Correspondence to Vivian Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Estimated global fossil fuel reserves, resources and CO2 storage capacities in Gt CO2. (PDF 205 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, V., Haszeldine, R., Tett, S. et al. Fossil fuels in a trillion tonne world. Nature Clim Change 5, 419–423 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing