Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elevation-dependent warming in mountain regions of the world

Abstract

There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations of these mechanisms may account for contrasting regional patterns of EDW. We discuss future needs to increase knowledge of mountain temperature trends and their controlling mechanisms through improved observations, satellite-based remote sensing and model simulations.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Elevation-dependent warming over and around the Tibetan Plateau.
Figure 2: Schematic of the relative vertical profile in atmospheric warming expected to result from various mechanisms.

References

  1. Lawrimore, J. H. et al. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. 116, D19121 (2011).

    Google Scholar 

  2. Whiteman, C. D. Mountain Meteorology: Fundamentals and Applications. (Oxford Univ. Press, 2000).

    Google Scholar 

  3. Barry, R. G. Mountain Weather and Climate 3rd edn (Cambridge Univ. Press, 2008).

    Google Scholar 

  4. Pepin, N. C. Daly, C. & Lundquist, J. The influence of surface versus free-air decoupling on temperature trend patterns in the western United States. J. Geophys. Res. 116, D10109 (2011).

    Google Scholar 

  5. Qin, J., Yang, K., Liang, S. & Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97, 321–327 (2009).

    Google Scholar 

  6. Barry, R. G. Mountain climatology and past and potential future climatic changes in mountain regions: a review. Mountain Res. Devel. 12, 71–86 (1992).

    Google Scholar 

  7. Barry, R. G. in The State of the World's Mountains: A Global Report (ed. Stone, P. B.) 359–380 (Zed Books, 1992).

    Google Scholar 

  8. Diaz, H. F. & Bradley, R. S. Temperature variations during the last century at high elevation sites. Climatic Change 36, 253–279 (1997).

    Google Scholar 

  9. Pepin, N. & Lundquist, J. Temperature trends at high elevations: patterns across the globe. Geophys. Res. Let. 35, L14701 (2008).

    Google Scholar 

  10. Ohmura, A. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol. 110, 499–508 (2012).

    Google Scholar 

  11. Wang, Q., Fan, X. & Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dynam. 43, 87–101 (2014).

    CAS  Google Scholar 

  12. Diaz, H. F., Bradley, R. S. & Ning, L. Climatic changes in mountain regions of the American Cordillera and the Tropics: historical changes and future outlook. Arct. Antarct. Alp. Res. 46, 735–743 (2014).

    Google Scholar 

  13. Yan, L. & Liu, X. Has climatic warming over the Tibetan Plateau paused or continued in recent years? J. Earth Ocean Atmos. Sci. 1, 13–28 (2014).

    Google Scholar 

  14. Giorgi, F., Hurrell, J., Marinucci, M. & Beniston, M. Elevation dependency of the surface climate change signal: a model study. J. Clim. 10, 288–296 (1997).

    Google Scholar 

  15. Bradley, R. S., Keimig, F. T., & Diaz, H. F. Projected temperature changes along the American cordillera and the planned GCOS network. Geophys. Res. Lett. 31, L16210 (2004).

    Google Scholar 

  16. Rangwala, I. Amplified water vapour feedback at high altitudes during winter. Int. J. Climatol. 33, 897–903 (2013).

    Google Scholar 

  17. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  18. Pepin, N. & Seidel, D. J. A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res. 110, D03104 (2005).

    Google Scholar 

  19. Rasmussen, R. et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J. Clim. 24, 3015–3048 (2011).

    Google Scholar 

  20. Rasmussen, R. et al. Climate change impacts on the water balance of the Colorado headwaters: high-resolution regional climate model simulations. J. Hydromet. 15, 1091–1116 (2014).

    Google Scholar 

  21. Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim. Change 4, 570–576 (2014).

    Google Scholar 

  22. Kotlarski, S., Bosshhard, T., Luthi, D., Paul, P. & Schar, C. Elevation gradients of European climate change in the regional climate model COSMO-CLM. Climatic Change 112, 189–215 (2012).

    Google Scholar 

  23. Beniston, M. & Rebetez, M. Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor. Appl. Climatol. 53, 231–243 (1996).

    Google Scholar 

  24. Diaz, H. F. & Graham, N. E. Recent changes in tropical freezing heights and the role of sea surface temperature. Nature 383, 152–155 (1996).

    CAS  Google Scholar 

  25. Rangwala, I. & Miller, J. R. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Climatic Change. 114, 527–547 (2012).

    Google Scholar 

  26. Chapin, F. S. et al. Role of land-surface changes in arctic summer warming. Science 310, 657–660 (2005).

    CAS  Google Scholar 

  27. Jeong, J-H. et al. Greening in the circumpolar high-latitude may amplify warming in the growing season. Clim. Dynam. 38, 1421–1431 (2012).

    Google Scholar 

  28. Fyfe, J. C. & Flato, G. M. Enhanced climate change and its detection over the Rocky Mountains. J. Clim. 12, 230–243 (1999).

    Google Scholar 

  29. Rangwala, I., Miller, J. R. Russell, G. L. & Xu, M. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Clim. Dynam. 34, 859–872 (2010).

    Google Scholar 

  30. Ceppi, P., Scherrer, S. C. Fischer, A. M. & Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 32, 203–213 (2010).

    Google Scholar 

  31. Scherrer, S., Ceppi, P., Croci-Maspoli, M. & Appenzeller, C. Snow-albedo feedback and Swiss spring temperature trends. Theor. Appl. Climatol. 110, 509–516 (2012).

    Google Scholar 

  32. Hantel, M. & Maurer C. The median winter snowline on the Alps. Met. Zeit. 20, 267–275 (2011).

    Google Scholar 

  33. Wunderle, S., Droz, M. & Kleindienst, H. Spatial and temporal analysis of the snow line in the Alps based on NOAA-AVHRR data. Geogr. Helvet. 57, 170–183 (2002).

    Google Scholar 

  34. Minder, J. R., Durran, D. R. & Roe, G. R. Mesoscale controls on the mountainside snow line. J. Atmos. Sci. 68, 2110–2127 (2011).

    Google Scholar 

  35. Hantel, M., Ehrendorfer, M. & Haslinger, A. Climate sensitivity of snow cover duration in Austria. Int. J. Climatol. 20, 615–640 (2000).

    Google Scholar 

  36. Barnett, T. P. et al. Human-induced changes in the hydrology of the western United States. Science 319, 1080–1083 (2008).

    CAS  Google Scholar 

  37. Holtmeier, F-K. & Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 14, 395–410 (2005).

    Google Scholar 

  38. Jiang, D., Zhang, Y. & Lang, X. Vegetation feedback under future global warming. Theor. Appl. Climatol. 106, 211–227 (2011).

    Google Scholar 

  39. Rikiishi, K. & Nakasato, H. Height dependence of the tendency for reduction in seasonal snow cover in the Himalaya and the Tibetan Plateau region, 1966–2001. Ann. Glaciol. 43, 369–377 (2006).

    Google Scholar 

  40. Archer, D. R. & Fowler, H. J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8, 47–61 (2004).

    Google Scholar 

  41. Bhutiyani, M., Kale, V. & Pawar, N. Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol. 30, 535–548 (2010).

    Google Scholar 

  42. Kothawale, D., Munot, A. & Kumar, K. K. Surface air temperature variability over India during 1901–2007, and its association with ENSO. Clim. Res. 42, 89–104 (2010).

    Google Scholar 

  43. Rangwala, I., Barsugli, J., Cozzetto, K., Neff, J. & Prairie, J. Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models. Clim. Dynam. 39, 1823–1840 (2012).

    Google Scholar 

  44. Vuille, M., Bradley, R., Werner, M. & Keimig, F. 20th century climate change in the tropical Andes: observations and model results. Climatic Change 59, 75–99 (2003).

    Google Scholar 

  45. Liu, X., Cheng, Z., Yan, L. & Yin, Z. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Change 68, 164–174 (2009).

    Google Scholar 

  46. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Google Scholar 

  47. Rangwala, I., Miller, J. & Xu, M. Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys. Res. Lett. 36, L06703 (2009).

    Google Scholar 

  48. Duan, A. & Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 33, L22704 (2006).

    Google Scholar 

  49. Ruckstuhl, C., Philipona, R., Morland, J. & Ohmura, A. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res. 112, D03302 (2007).

    Google Scholar 

  50. Naud, C. M., Miller, J. R. & Landry, C. Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations. J. Geophys. Res. 117, D05101 (2012).

    Google Scholar 

  51. Philipona, R., Dürr, B., Ohmura, A. & Ruckstuhl, C. Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys. Res. Lett. 32, L19809 (2005).

    Google Scholar 

  52. Naud, C. M., Chen, Y., Rangwala, I. & Miller, J. R. Sensitivity of downward longwave surface radiation to moisture and cloud changes in a high elevation region. J. Geophys. Res 118, 10072–10081 (2013).

    Google Scholar 

  53. Ohmura, A. On the cause of 'Fram' type seasonal change in diurnal amplitude of air temperature in polar regions. J. Climatol. 4, 325–338 (1984).

    Google Scholar 

  54. Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nature Geosci. 1, 221–227 (2008).

    CAS  Google Scholar 

  55. Bonasoni, P. et al. Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal-Climate Observatory–Pyramid (5079 m). Atmos. Chem. Phys. 10, 4823–4885 (2010).

    Google Scholar 

  56. Vernier, J-P., Thomason, L. W. & Kar, J. CALIPSO detection of an Asian tropopause aerosol layer. Geophys. Res. Lett. 38, L07804 (2011).

    Google Scholar 

  57. Lawrence, M. G. Asia under a high-level brown cloud. Nature Geosci. 4, 352–353 (2011).

    CAS  Google Scholar 

  58. Xu, B. et al. Black soot and the survival of Tibetan glaciers. Proc. Natl Acad. Sci. USA 106, 22114–22118 (2009).

    CAS  Google Scholar 

  59. Lau, W., Kim, M., Kim, K. & Lee, W. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett. 5, 025204 (2010).

    Google Scholar 

  60. Gautam, R., Hsu, N. C., Lau, W. K. & Yasunari, T. Satellite observations of desert dust-induced Himalayan snow darkening. J. Geophys. Res. 40, 988–993 (2013).

    Google Scholar 

  61. Painter, T. H. et al. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 34, L12502 (2007).

    Google Scholar 

  62. Santer, B. D. et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301, 479–483 (2003).

    CAS  Google Scholar 

  63. Hardy, D. R. in Encyclopedia of Snow, Ice and Glaciers (eds Singh, V. P., Singh, P. & Haritashya, U. K.) 672–679 (Springer, 2011).

    Google Scholar 

  64. Holland, M. M. & Bitz, C. M. Polar amplification of climate change in coupled models. Clim. Dynam. 21, 221–232 (2003).

    Google Scholar 

  65. Winton, M. Amplified Arctic climate change: what does surface albedo feedback have to do with it? Geophys. Res. Lett. 33, L03701 (2006).

    Google Scholar 

  66. Crook, J. A., Forster, P. M. & Stuber, N. Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Clim. 24, 3575–3592 (2011).

    Google Scholar 

  67. Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Res. 43, W07447 (2007).

    Google Scholar 

  68. Bhutiyani, M., Kale, V. & Pawar, N. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change 85, 159–177 (2007).

    Google Scholar 

  69. Chen, B., Chao, W. & Liu, X. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study. Clim. Dynam. 20, 401–413 (2003).

    Google Scholar 

  70. Diaz, H. & Eischeid, J. Disappearing 'alpine tundra' Köppen climatic type in the western United States. Geophys. Res. Lett. 34, L18707 (2007).

    Google Scholar 

  71. Gilbert, A. & Vincent, C. Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. Geophys. Res. Lett. 40, 2102–2108 (2013).

    Google Scholar 

  72. Hu, Y., Maskey, S. & Uhlenbrook, S. Expected changes in future temperature extremes and their elevation dependency over the Yellow River source region. Hydrol. Earth System Sci. 17, 2501–2514 (2013).

    Google Scholar 

  73. Hu, Z., Zhang, C., Hu, Q. S. & Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 27, 1143–1167 (2014).

    Google Scholar 

  74. Im, E-S. & Ahn, J-B. On the elevation dependency of present-day climate and future change over Korea from a high resolution regional climate simulation. J. Met. Soc. Japan 89, 89–100 (2011).

    Google Scholar 

  75. Li, Z. et al. Spatial and temporal trends of temperature and precipitation during 1960–2008 at the Hengduan Mountains, China. Quatern. Int. 236, 127–142 (2011).

    Google Scholar 

  76. Liu, X. & Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729–1742 (2000).

    Google Scholar 

  77. Lu, A., Kang, S., Li, Z. & Theakstone, W. Altitude effects of climatic variation on Tibetan Plateau and its vicinities. J. Earth Sci. 21, 189–198 (2010).

    Google Scholar 

  78. McGuire, C. R., Nufio, C. R., Bowers, M. D. & Guralnick, R. P. Elevation-dependent temperature trends in the Rocky Mountain Front Range: changes over a 56- and 20-year record. PLoS ONE 7, e44370 (2012).

    CAS  Google Scholar 

  79. Rangwala, I. & Miller, J. R. Twentieth century temperature trends in Colorado's San Juan Mountains. Arct. Antarc. Alp. Res. 42, 89–97 (2010).

    Google Scholar 

  80. Seidel, D. & Free, M. Comparison of lower-tropospheric temperature climatologies and trends at low and high elevation radiosonde sites. Climatic Change 59, 53–74 (2003).

    Google Scholar 

  81. Shrestha, A., Wake, C., Mayewski, P. & Dibb, J. Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J. Clim. 12, 2775–2786 (1999).

    Google Scholar 

  82. Tang, G. & Arnone, J. A. Trends in surface air temperature and temperature extremes in the Great Basin during the 20th century from ground-based observations. J. Geophys. Res. Atmos. 118, 3579–3589 (2013).

    Google Scholar 

  83. Tao, J. et al. Elevation-dependent temperature change in the Qinghai–Xizang Plateau grassland during the past decade. Theor. Appl. Clim. 117, 61–71 (2013).

    Google Scholar 

  84. Vuille, M. & Bradley, R. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Lett. 27, 3885–3888 (2000).

    Google Scholar 

  85. You, Q. et al. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Change 71, 124–133 (2010).

    Google Scholar 

  86. Zubler, E. M. et al. Localized climate change scenarios of mean temperature and precipitation over Switzerland. Clim. Change 125, 237–252 (2014).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Mountain Research Initiative for funding an international workshop in Payerbach Austria in April 2014 on elevation-dependent warming at which the idea for this paper was conceived and drafted.

Author information

Authors and Affiliations

Consortia

Contributions

N.P., R.S.B., H.F., E.P., I.R., S.N.W. and J.R.M. wrote and edited substantial sections of the main text; N.P., S.N.W., E.P. and N.F. wrote substantial sections of the supplementary material; S.W. helped with referencing; X.D.L. provided Fig. 1; N.P. conceived and M.B. provided Fig. 2; and I.R. provided Table 1. Other group members provided further insight, comments and editorial suggestions.

Corresponding author

Correspondence to N. Pepin.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 399 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5, 424–430 (2015). https://doi.org/10.1038/nclimate2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2563

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing