Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation

A Corrigendum to this article was published on 24 September 2015

This article has been updated


Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduction in the AMOC over the twentieth century and particularly after 1970. Since 1990 the AMOC seems to have partly recovered. This time evolution is consistently suggested by an AMOC index based on sea surface temperatures, by the hemispheric temperature difference, by coral-based proxies and by oceanic measurements. We discuss a possible contribution of the melting of the Greenland Ice Sheet to the slowdown. Using a multi-proxy temperature reconstruction for the AMOC index suggests that the AMOC weakness after 1975 is an unprecedented event in the past millennium (p > 0.99). Further melting of Greenland in the coming decades could contribute to further weakening of the AMOC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Linear trends of annual surface temperature since AD 1901.
Figure 2: Connection between the AMOC stream function and the temperature-based AMOC index in a global warming scenario (RCP8.5).
Figure 3: Surface temperature time series for different regions.
Figure 4: Spectral analysisof the proxy-based AMOC index shown in Fig. 3b.
Figure 5: A compilation of different indicators for Atlantic ocean circulation.
Figure 6: Mass balance terms of the Greenland Ice Sheet.

Change history

  • 03 September 2015

    In the version of this Article originally published, in Fig. 1 the data plotted were for the calendar month of December and not the annual mean data. This has been replaced with a new global temperature trend map for annual mean data, in which (due to the reduced variability of annual as compared with monthly data) the cooling patch in the subpolar North Atlantic stands out even more. The first sentence of the caption for Fig. 1 has been amended to: 'Linear trends of annual surface temperature since AD 1901'. None of the conclusions in the Article are affected by this error.


  1. 1

    Stouffer, R. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

    Article  Google Scholar 

  2. 2

    Latif, M. et al. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Clim. 17, 1605–1614 (2004).

    Article  Google Scholar 

  3. 3

    Dima, M. & Lohmann, G. Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Clim. 23, 5–16 (2010).

    Article  Google Scholar 

  4. 4

    Thompson, D. W. J., Wallace, J. M., Kennedy, J. J. & Jones, P. D. An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467, 444–447 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Feulner, G., Rahmstorf, S., Levermann, A. & Volkwardt, S. On the origin of the surface air temperature difference between the hemispheres in Earth’s present-day climate. J. Clim. 26, 7136–7150 (2013).

    Article  Google Scholar 

  6. 6

    Drijfhout, S., van Oldenborgh, G. J. & Cimatoribus, A. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Clim. 25, 8373–8379 (2012).

    Article  Google Scholar 

  7. 7

    Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).

    Article  Google Scholar 

  9. 9

    Terray, L. Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett. 39, L19712 (2012).

    Article  Google Scholar 

  10. 10

    Roberts, C. D., Garry, F. K. & Jackson, L. C. A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic meridional overturning circulation. J. Clim. 26, 9155–9174 (2013).

    Article  Google Scholar 

  11. 11

    Jungclaus, J. H. et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 5, 422–446 (2013).

    Article  Google Scholar 

  12. 12

    Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Wanamaker, A. et al. Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nature Commun. 3, 899 (2012).

    Article  Google Scholar 

  15. 15

    Crowley, T. J. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Shindell, D. T., Schmidt, G. A., Miller, R. L. & Mann, M. E. Volcanic and solar forcing of climate change during the preindustrial era. J. Clim. 16, 4094–4107 (2003).

    Article  Google Scholar 

  17. 17

    Feulner, G. Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions? Geophys. Res. Lett. 38, L16706 (2011).

    Article  Google Scholar 

  18. 18

    PAGES 2k Consortium Continental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346 (2013).

    Article  Google Scholar 

  19. 19

    Willis, J. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett. 37, L06602 (2010).

    Article  Google Scholar 

  20. 20

    Moffa-Sanchez, P., Born, A., Hall, I. R., Thornalley, D. J. R. & Barker, S. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nature Geosci. 7, 275–278 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Miettinen, A., Divine, D., Koc, N., Godtliebsen, F. & Hall, I. R. Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8 kyr. J. Clim. 25, 4205–4219 (2012).

    Article  Google Scholar 

  22. 22

    Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676 (2000).

    Article  Google Scholar 

  23. 23

    Chambers, D. P., Merrifield, M. A. & Nerem, R. S. Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 39, L18607 (2012).

    Article  Google Scholar 

  24. 24

    Tung, K. & Zhou, J. Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl Acad. Sci. USA 110, 2058–2063 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B. & McCarthy, M. D. Nutrient regime shift in the western North Atlantic indicated by compound-specific delta N-15 of deep-sea gorgonian corals. Proc. Natl Acad. Sci. USA 108, 1011–1015 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Bryden, H. L., Longworth, H. R. & Cunningham, S. A. Slowing of the Atlantic meridional overturning circulation at 25° N. Nature 438, 655–657 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Kanzow, T. et al. Seasonal variability of the Atlantic Meridional overturning circulation at 26.5° N. J. Clim. 23, 5678–5698 (2010).

    Article  Google Scholar 

  28. 28

    Smeed, D. A. et al. Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci. 10, 29–38 (2014).

    Article  Google Scholar 

  29. 29

    Curry, R. & Mauritzen, C. Dilution of the northern North Atlantic Ocean in recent decades. Science 308, 1772–1774 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Belkin, I. M., Levitus, S., Antonov, J. & Malmberg, S-A. “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr. 41, 1–68 (1998).

    Article  Google Scholar 

  31. 31

    Dickson, R. R., Meincke, J., Malmberg, S. A. & Lee, A. J. The “Great Salinity Anomaly” in the northern North Atlantic, 1968–82. Prog. Oceanogr 20, 103–151 (1988).

    Article  Google Scholar 

  32. 32

    Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Box, J. & Colgan, W. Greenland Ice Sheet mass balance reconstruction. Part III: Marine ice loss and total mass balance (1840–2010). J. Clim. 26, 6990–7002 (2013).

    Article  Google Scholar 

  34. 34

    Rye, C. et al. Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nature Geosci. 7, 732–735 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Lazier, J. R. N. Oceanographic conditions at Ocean Weather Ship Bravo, 1964–74. Atmos-Ocean 18, 227–238 (1980).

    Article  Google Scholar 

  36. 36

    Kuhlbrodt, T., Titz, S., Feudel, U. & Rahmstorf, S. A simple model of seasonal open ocean convection. Part II: Labrador Sea stability and stochastic forcing. Ocean Dynam. 52, 36–49 (2001).

    Article  Google Scholar 

  37. 37

    Gelderloos, R., Straneo, F. & Katsman, C. A. Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: Lessons from the great salinity anomaly years 1968–71. J. Clim. 25, 6743–6755 (2012).

    Article  Google Scholar 

  38. 38

    Robson, J. I., Sutton, R. T. & Smith, D. M. Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett. 39, L19713 (2012).

    Article  Google Scholar 

  39. 39

    Robson, J., Hodson, D., Hawkins, E. & Sutton, R. Atlantic overturning in decline? Nature Geosci. 7, 2–3 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Lozier, M. S., Roussenov, V., Reed, M. S. C. & Williams, R. G. Opposing decadal changes for the North Atlantic meridional overturning circulation. Nature Geosci. 3, 728–734 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Zhang, R. Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 35, L20705 (2008).

    Article  Google Scholar 

  42. 42

    Hofmann, M. & Rahmstorf, S. On the stability of the Atlantic meridional overturning circulation. Proc. Natl Acad. Sci. USA 106, 20584–20589 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Weaver, A. J. et al. Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett. 39, L20709 (2012).

    Article  Google Scholar 

  44. 44

    Nghiem, S. V. et al. The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).

    Article  Google Scholar 

  45. 45

    Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J. & Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (2012).

    Article  Google Scholar 

  46. 46

    Rahmstorf, S. Shifting seas in the greenhouse? Nature 399, 523–524 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Wood, R. A., Keen, A. B., Mitchell, J. F. B. & Gregory, J. M. Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399, 572–575 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Hansen, J., Ruedy, R., Glascoe, J. & Sato, M. GISS analysis of surface temperature change. J. Geophys. Res. 104, 30997–31022 (1999).

    Article  Google Scholar 

  49. 49

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  50. 50

    Mann, M. E. & Lees, J. M. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409–445 (1996).

    Article  Google Scholar 

  51. 51

    Huck, T., Colin de Verdiere, A., Estrade, P. & Schopp, R. Low-frequency variations of the large-scale ocean circulation and heat transport in the North Atlantic from 1955–1998 in situ temperature and salinity data. Geophys. Res. Lett. 35, L23613 (2008).

    Article  Google Scholar 

Download references


We thank O. Sherwood for providing coral data. M.E.M. acknowledges support for this work from the ATM program of the National Science Foundation (grant ATM-0902133).

Author information




S.Rahmstorf conceived and designed the research and wrote the paper, E.J.S., S.Rutherford, A.R. and G.F. performed the research, M.E.M. and J.E.B. contributed materials/analysis tools and co-wrote the paper.

Corresponding author

Correspondence to Stefan Rahmstorf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmstorf, S., Box, J., Feulner, G. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Clim Change 5, 475–480 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing