Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limited potential of no-till agriculture for climate change mitigation


The Emissions Gap Report 2013 from the United Nations Environment Programme restates the claim that changing to no-till practices in agriculture, as an alternative to conventional tillage, causes an accumulation of organic carbon in soil, thus mitigating climate change through carbon sequestration. But these claims ignore a large body of experimental evidence showing that the quantity of additional organic carbon in soil under no-till is relatively small: in large part apparent increases result from an altered depth distribution. The larger concentration near the surface in no-till is generally beneficial for soil properties that often, though not always, translate into improved crop growth. In many regions where no-till is practised it is common for soil to be cultivated conventionally every few years for a range of agronomic reasons, so any soil carbon benefit is then lost. We argue that no-till is beneficial for soil quality and adaptation of agriculture to climate change, but its role in mitigation is widely overstated.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mexican farmer practising no-till crop establishment.


Figure 2: Changes in soil organic carbon (SOC) content in soil under no-till compared to conventional tillage.


  1. 1

    The Emissions Gap Report 2013 (United Nations Environment Programme, 2013).

  2. 2

    IPCC Climate Change 2014: Mitigation of Climate Change (in the press);

  3. 3

    Giller, K. E., Witter, E., Corbeels, M. & Tittonell, P. Conservation agriculture and smallholder farming in Africa: the heretics view. Field Crop. Res. 114, 23–34 (2009).

    Article  Google Scholar 

  4. 4

    Giller, K. E. et al. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crop. Res. 124, 468–472 (2011).

    Article  Google Scholar 

  5. 5

    Corbeels, M. et al. Understanding the impact and adoption of conservation agriculture in Africa: a multi-scale analysis. Agr. Ecosyst. Environ. 187, 155–170 (2014).

    Article  Google Scholar 

  6. 6

    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr. Ecosyst. Environ. 164, 80–99 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48, 21–51 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Paustian, K. et al. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manage. 13, 230–244 (1997).

    Article  Google Scholar 

  9. 9

    Lal, R. in Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation (eds Hillel, D & Rosenzweig, C) 287–305 (Imperial College Press, 2011).

    Google Scholar 

  10. 10

    Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agr. Ecosyst. Environ. 82, 121–127 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 42–55 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Jackson, R. B. & Schlesinger, W. H. Curbing the U.S. carbon deficit. Proc. Natl Acad. Sci. USA 101, 15827–15829 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Jones, C. et al. Global climate change and soil carbon stocks: predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 11, 154–166 (2005).

    Article  Google Scholar 

  14. 14

    Lal, R. Soil carbon sequestration impacts on global change and food security. Science 304, 1623–1627 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Corsi, S., Friedrich, T., Kassam, A., Pisante, M. & de Moraes Sà, J. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A Literature Review (FAO, 2012).

    Google Scholar 

  17. 17

    Luo, Z., Wang, E. & Sun, O. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr. Ecosyst. Environ. 139, 224–231 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Ngwira, A. R., Thierfelder, C. & Lambert, D. M. Conservation agriculture systems for Malawian smallholder farmers: long-term effects on crop productivity, profitability and soil quality. Renew. Agr. Food Syst. 28, 350–363 (2013).

    Article  Google Scholar 

  19. 19

    Verhulst, N. et al. in Advances in Soil Science: Food Security and Soil Quality (eds Lal, R. & Stewart, B. A.) 137–208 (CRC Press, 2010).

    Book  Google Scholar 

  20. 20

    Baveye, P. C. et al. From dust bowl to dust bowl: soils are still very much a frontier in science. Soil Sci. Soc. Am. J. 75, 2037–2048 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agr. Ecosyst. Environ. 149, 37–49 (2012).

    Article  Google Scholar 

  22. 22

    Thierfelder, C. et al. Conservation agriculture in Southern Africa: advances in knowledge. Renew. Agr. Food Syst. (2014).

  23. 23

    Govaerts, B. et al. Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit. Rev. Plant Sci. 28, 97–122 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Virto, I., Burlot, P. & Chenu, C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108, 17–26 (2012).

    Article  Google Scholar 

  25. 25

    Agulilera, E., Lassaletta, L., Gattinger, A. & Gimeno, B. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agr. Ecosyst. Environ. 168, 25–36 (2013).

    Article  Google Scholar 

  26. 26

    Angers, D. A. & Eriksen-Hamel, N. S. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci. Soc. Am. J. 72, 1370–1374 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Baker. J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration – What do we really know? Agr. Ecosyst. Environ. 118, 1–5 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Machado, P. L. O. A., Sohi, S. P. & Gaunt, J. L. Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol. Soil Use Manage. 19, 250–256 (2003).

    Article  Google Scholar 

  29. 29

    Dimassi, B. et al. Long-term effects of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agr. Ecosyst. Environ. 188, 134–146 (2014).

    Article  Google Scholar 

  30. 30

    Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22, 151–184 (2003).

    Article  Google Scholar 

  31. 31

    Lal, R. Climate-resilient agriculture and soil organic carbon. Indian J. Agron. 58, 440–450 (2013).

    CAS  Google Scholar 

  32. 32

    Climate Smart Agriculture: A Call to Action (The World Bank, 2012);

  33. 33

    Powlson, D. S. & Jenkinson, D. S. A comparison of the organic-matter, biomass, adenosine-triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. J. Agr. Sci. 97, 713–721 (1981).

    CAS  Article  Google Scholar 

  34. 34

    Ellert, B. H. & Bettany, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 75, 529–538 (1995).

    CAS  Article  Google Scholar 

  35. 35

    VandenBygaart, A. J. & Kay, B. D. persistence of soil organic carbon after ploughing a long-term no-till field in Southestern Ontario, Canada. Soil Sci. Soc. Am. J. 68, 1394–1402 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G. & Six, J. Determining soil carbon stock changes: simple bulk density corrections fail. Agr. Ecosyst. Environ. 134, 251–256 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Palm, C., Blanco-Canqui, H., DeClerck, F. & Gatere, L. Conservation agriculture and ecosystem services: An overview. Agr. Ecosyst. Environ. 187, 87–105 (2013).

    Article  Google Scholar 

  38. 38

    Bhattacharyya, R., Tuti, M. D., Kundu, S., Bisht, J. K. & Bhatt, J. C. Conservation tillage impacts on soil aggregation and carbon pools in a sandy clay loam soil of the Indian Himalayas. Soil Sci. Soc. Am. J. 76, 617–627 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Chivenge, P. P., Murwira, H. K., Giller, K. E., Mapfumo, P. & Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soil. Soil Till. Res. 94, 328–337 (2007).

    Article  Google Scholar 

  40. 40

    Yang, X. M. & Kay, B. D. Impacts of tillage practices on total, loose- and occluded-particulate, and humified organic carbon fractions in soils within a field in southern Ontario. Can. J. Soil Sci. 81, 149–156 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Johnston, A. E., Poulton, P. R. & Coleman, K. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 101, 1–57 (2009).

    Article  Google Scholar 

  42. 42

    Powlson, D. S. et al. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agr. Ecosyst. Environ. 146, 23–33 (2012).

    Article  Google Scholar 

  43. 43

    Gollany, H. T. et al. Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production. Agron. J. 103, 234–246. (2011).

    CAS  Article  Google Scholar 

  44. 44

    FAOSTAT (FAO, 2012);

  45. 45

    De Gryze, S., Lee, J., Ogle, S., Paustian, K. & Six, J. Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agr. Ecosyst. Environ. 144, 150–158 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Derpsch, R., Friedrich, T., Kassam, A. & Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agr. Biol. Eng. 3, 1–26 (2010).

    Google Scholar 

  47. 47

    Conant, R. T., Easter, M., Paustian, K., Swan, A. & Williams, S. Impact of periodic tillage on soil C stocks: A synthesis. Soil Till. Res. 95, 1–10 (2007).

    Article  Google Scholar 

  48. 48

    Kirkegaard, J. A. et al. Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agr. Ecosyst. Environ. 187, 133–145 (2014).

    Article  Google Scholar 

  49. 49

    Andersson, J. A. & D'Souza, S. From adoption claims to understanding farmers and contexts: A literature review of Conservation Agriculture (CA) adoption among smallholder farmers in southern Africa. Agr. Ecosyst. Environ. 187, 116–132 (2014).

    Article  Google Scholar 

  50. 50

    Pannell, D. J., Llewellyn, R. S. & Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agr. Ecosyst. Environ. 187, 52–64 (2014).

    Article  Google Scholar 

  51. 51

    Tittonell, P. et al. Agroecology-based aggradation-conservation agriculture (ABACO): Targetting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crop. Res. 132, 168–174 (2012).

    Article  Google Scholar 

  52. 52

    Rochette, P. No-till only increases N2O emissions in poorly-aerated soils. Soil Till. Res. 101, 97–100 (2008).

    Article  Google Scholar 

  53. 53

    Van Kessel, C. et al. Climate, duration, and N placement determine NO emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).

    Article  Google Scholar 

  54. 54

    IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E) (Cambridge Univ. Press, 2007).

  55. 55

    Mangalassery, S. et al. To what extent can tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2013).

    Article  Google Scholar 

  56. 56

    Grace, P. R. et al. Soil carbon sequestration and associated economic costs for farming systems of the Indo-Gangetic Plain: A meta-analysis. Agr. Ecosyst. Environ. 146, 137–146 (2012).

    Article  Google Scholar 

  57. 57

    Farage, P. K. et al. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: A modelling approach. Soil Till. Res. 94, 457–472 (2007).

    Article  Google Scholar 

  58. 58

    Post, W. M. & Kwon, K. C. Soil carbon sequestration and land-use change: processes and potential. Glob. Change Biol. 6, 317–327 (2000).

    Article  Google Scholar 

  59. 59

    Smith, P., Haberl, H., Popp, A., Erb, K. H. & Lauk, C. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  60. 60

  61. 61

    Dobermann, A. & Cassman, K. G. Cereal area and nitrogen use are drivers of future nitrogen fertilizer consumption. Sci. China Ser. C 48, Supplement 1–14 (2005).

    Article  Google Scholar 

  62. 62

    Zhang, W. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

    CAS  Article  Google Scholar 

  63. 63

    Chadwick, D. et al. Manure management: implications for greenhouse gas emissions. Animal Feed Sci. Technol. 166–167, 514–531 (2011).

    Article  Google Scholar 

  64. 64

    Petersen, S. O. et al. Manure management for greenhouse gas mitigation. Animal 7 (suppl. 2), 266–282 (2013).

    Article  Google Scholar 

  65. 65

    Eckard, R. J., Grainger, C. & de Klein, C. A. M. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest. Sci. 130, 47–56 (2010).

    Article  Google Scholar 

  66. 66

    Reynolds, C. K., Crompton, L. A. & Mills, J. A. N. Improving the efficiency of energy utilization in cattle. Animal Prod. Sci. 51, 6–12 (2011).

    Article  Google Scholar 

  67. 67

    West, T. O. & Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agr. Ecosyst. Environ. 91, 217–232 (2002).

    Article  Google Scholar 

  68. 68

    Antle, J. M. & Ogle, S. M. Influence of soil C, N2O and fuel use on GHG mitigation with no-till adoption. Climatic Change 111, 609–625 (2012).

    CAS  Article  Google Scholar 

  69. 69

    Baudron, F., Jaleta, M., Okitoi, O. & Tegegn, A. Conservation agriculture in African mixed crop-livestock systems: expanding the niche. Agr. Ecosyst. Environ. 187, 171–182 (2014).

    Article  Google Scholar 

  70. 70

    Nelson, R. G. et al. Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004. J. Environ. Qual. 38, 418–425 (2009).

    CAS  Article  Google Scholar 

Download references


Parts of this work result from studies on the climate change mitigation impacts of conservation agriculture conducted by the International Maize and Wheat Improvement Center funded by the Climate Change, Agriculture and Food Security programme of the Consultative Group on International Agricultural Research.

Author information



Corresponding author

Correspondence to David S. Powlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Powlson, D., Stirling, C., Jat, M. et al. Limited potential of no-till agriculture for climate change mitigation. Nature Clim Change 4, 678–683 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing