Solar ultraviolet radiation in a changing climate


The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex interactions between the drivers of climate change and those of stratospheric ozone depletion, and the positive and negative feedbacks among climate, ozone and ultraviolet radiation. These will result in both risks and benefits of exposure to ultraviolet radiation for the environment and human welfare. This Review synthesizes these new insights and their relevance in a world where changes in climate as well as in stratospheric ozone are altering exposure to ultraviolet radiation with largely unknown consequences for the biosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Observed (pre-2010) and projected changes in annual mean erythemal (sunburning) clear-sky UV-B radiation at Earth's surface, relative to 1980, for different latitude bands.
Figure 2: Conceptual model of aquatic and terrestrial processes that are possibly influenced by interactions between ultraviolet radiation and climate change.
Figure 3: Projection of the total numbers of excess new cases of total skin cancer per million people per year avoided by the Montreal Protocol in 2030 compared with a reference population that takes account of population growth only.
Figure 4: Predicted total skin cancer incidence per million population according to calendar year.


  1. 1

    Molina, M. & Rowland, F. Stratospheric sink for chlorofluoromethanes: chlorine atomic-catalysed destruction of ozone. Nature 249, 810–812 (1974).

    Article  CAS  Google Scholar 

  2. 2

    Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985).

    Article  CAS  Google Scholar 

  3. 3

    Newman, P. A. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113–2128 (2009).

    Article  CAS  Google Scholar 

  4. 4

    Slaper, H., Velders, G. J., Daniel, J. S., de Gruijl, F. R. & van der Leun, J. C. Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements. Nature 384, 256–258 (1996).

    Article  CAS  Google Scholar 

  5. 5

    Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–4819 (2007).

    Article  CAS  Google Scholar 

  6. 6

    Damian, D. L., Matthews, Y. J., Phan, T. A. & Halliday, G. M. An action spectrum for ultraviolet radiation-induced immunosuppression in humans. Brit. J. Dermatol. 164, 657–659 (2011).

    CAS  Google Scholar 

  7. 7

    Fahey, D.W. & Hegglin, M. I. Twenty Questions and Answers About the Ozone Layer: 2010 Update (World Meteorological Organization, 2011);

    Google Scholar 

  8. 8

    World Meteorological Organization Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011);

  9. 9

    Newman, P. A., Gleason, J. F., McPeters, R. D. & Stolarski, R. S. Anomalously low ozone over the Arctic. Geophys. Res. Lett. 24, 2689–2692 (1997).

    Article  CAS  Google Scholar 

  10. 10

    Manney, G. L. et al. Unprecedented Arctic ozone loss in 2011. Nature 478, 469–475 (2011).

    Article  CAS  Google Scholar 

  11. 11

    Plummer, D. A., Scinocca, J. F., Shepherd, T. G., Reader, M. C. & Jonsson, A. I. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases. Atmos. Chem. Phys. 10, 8803–8820 (2010).

    Article  CAS  Google Scholar 

  12. 12

    Bais, A. F. et al. Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects. Atmos. Chem. Phys. 11, 7533–7545 (2011).

    Article  CAS  Google Scholar 

  13. 13

    Osso, A., Sola, Y., Bech, J. & Lorente, J. Evidence for the influence of the North Atlantic Oscillation on the total ozone column at northern low latitudes and midlatitudes during winter and summer seasons. J. Geophys. Res. Atmos. 116, D24122 (2011).

    Article  CAS  Google Scholar 

  14. 14

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013);

  15. 15

    Austin, J. et al. Chemistry–climate model simulations of spring Antarctic ozone. J. Geophys. Res. Atmos. 115, D00M11 (2010).

    Google Scholar 

  16. 16

    Sinnhuber, B. M. et al. Arctic winter 2010/2011 at the brink of an ozone hole. Geophys. Res. Lett. 38, L24814 (2011).

    Article  CAS  Google Scholar 

  17. 17

    Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).

    Article  CAS  Google Scholar 

  18. 18

    Anderson, J. G. UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor. Science 337, 835–839 (2012).

    Article  CAS  Google Scholar 

  19. 19

    Liu, Y. H., Key, J. R., Liu, Z. Y., Wang, X. J. & Vavrus, S. J. A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett. 39, L05705 (2012).

    Google Scholar 

  20. 20

    Parmentier, F. J. W. et al. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Clim. Change 3, 195–202 (2013).

    Article  CAS  Google Scholar 

  21. 21

    Watanabe, S. et al. Future projections of surface UV-B in a changing climate. J. Geophys. Res. Atmos. 116, D16118 (2011).

    Article  CAS  Google Scholar 

  22. 22

    Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of polar ozone depletion on subtropical precipitation. Science 332, 951–954 (2011).

    Article  CAS  Google Scholar 

  23. 23

    Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys. Res. Lett. 38, L02701 (2011).

    Article  CAS  Google Scholar 

  24. 24

    Polvani, L. M., Previdi, M. & Deser, C. Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett. 38, L04707 (2011).

    Article  CAS  Google Scholar 

  25. 25

    Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587 (2013).

    Article  CAS  Google Scholar 

  26. 26

    Rohrer, F. & Berresheim, H. Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442, 184–187 (2006).

    Article  CAS  Google Scholar 

  27. 27

    Lamarque, J. F., Kiehl, J., Shields, C., Boville, B. & Kinnison, D. Modeling the response to changes in tropospheric methane concentration: application to the Permian–Triassic boundary. Paleoceanography 21, PA3006 (2006).

    Article  Google Scholar 

  28. 28

    Fann, N. et al. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk. Anal. 32, 81–95 (2012).

    Article  Google Scholar 

  29. 29

    Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  Google Scholar 

  30. 30

    Van Dingenen, R. et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43, 604–618 (2009).

    Article  CAS  Google Scholar 

  31. 31

    Denman, K. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 7 (Cambridge Univ. Press, 2007).

    Google Scholar 

  32. 32

    IPCC Climate Change 2007: Synthesis Report (eds Pachauri, R. K. & Reisinger, A.) (Cambridge Univ. Press, 2007);

  33. 33

    McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198 (2011).

    Article  CAS  Google Scholar 

  34. 34

    Palancar, G. G., Shetter, R. E., Hall, S. R., Toselli, B. M. & Madronich, S. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements. Atmos. Chem. Phys. 11, 5457–5469 (2011).

    Article  CAS  Google Scholar 

  35. 35

    Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A. & Bornman, J. F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10, 226–241 (2011).

    Article  CAS  Google Scholar 

  36. 36

    Robinson, S. A., Turnbull, J. D. & Lovelock, C. E. Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Glob. Change Biol. 11, 476–489 (2005).

    Article  Google Scholar 

  37. 37

    Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).

    Article  CAS  Google Scholar 

  38. 38

    Ballaré, C. L., Mazza, C. A., Austin, A. T. & Pierik, R. Canopy light and plant health. Plant Physiol. 160, 145–155 (2012).

    Article  CAS  Google Scholar 

  39. 39

    Demkura, P. V., Abdala, G., Baldwin, I. T. & Ballaré, C. L. Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant. Physiol. 152, 1084–1095 (2010).

    Article  CAS  Google Scholar 

  40. 40

    Demkura, P. V. & Ballaré, C. L. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol. Plant 5, 642–652 (2012).

    Article  CAS  Google Scholar 

  41. 41

    Schreiner, M. et al. UV-B-induced secondary plant metabolites — potential benefits for plant and human health. Crit. Rev. Plant Sci. 31, 229–240 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Wargent, J. J. & Jordan, B. R. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytol. 197, 1058–1076 (2013).

    Article  CAS  Google Scholar 

  43. 43

    Oerke, E. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2006).

    Article  Google Scholar 

  44. 44

    Birch, A., Begg, G. & Squire, G. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J. Exp. Bot. 62, 3251–3261 (2011).

    Article  CAS  Google Scholar 

  45. 45

    Zepp, R. G., Erickson, D. J. III, Paul, N. D. & Sulzberger, B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem. Photobiol. Sci. 10, 261–279 (2011).

    Article  CAS  Google Scholar 

  46. 46

    Austin, A. T. Has water limited our imagination for aridland biogeochemistry? Trends Ecol. Evol. 26, 229–235 (2011).

    Article  Google Scholar 

  47. 47

    Cory, R. M., Crump, B. C., Dobkowski, J. A. & Kling, G. W. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc. Natl Acad. Sci. USA 110, 3429–3434 (2013).

    Article  Google Scholar 

  48. 48

    Bandurska, H., Niedziela, J. & Chadzinikolau, T. Separate and combined responses to water deficit and UV-B radiation. Plant Sci. 213, 98–105 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).

    Article  Google Scholar 

  50. 50

    Wang, M. & Overland, J. A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys. Res. Lett. 39, L18501 (2012).

    Google Scholar 

  51. 51

    Livingstone, D., Adrian, R., Blenckner, T., George, G. & Weyhenmeyer, G. Lake ice phenology in The Impact of Climate Change on European Lakes (ed. George, G.) 51–61 (Springer, 2010).

    Google Scholar 

  52. 52

    Frey, K., Perovich, D. & Light, B. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys. Res. Lett. 38, L22501 (2011).

    Article  Google Scholar 

  53. 53

    Zepp, R. et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: importance of colored dissolved organic matter. Limnol. Oceanogr. 53, 1909–1922 (2008).

    Article  CAS  Google Scholar 

  54. 54

    Mopper, K., Kieber, D. J. & Stubbins, A. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. & Carlson, C.) Ch. 9 (Elsevier 2013).

    Google Scholar 

  55. 55

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  CAS  Google Scholar 

  56. 56

    Gao, K. & Zheng, Y. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob. Change Biol 16, 2388–2398 (2010).

    Article  Google Scholar 

  57. 57

    Xu, Y., Shi, D., Aristilde, L. & Morel, F. M. The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: possible role of weak complexes. Limnol. Oceanogr. 57, 293–304 (2012).

    Article  CAS  Google Scholar 

  58. 58

    Aarnos, H., Ylostalo, P. & Vahatalo, A. V. Seasonal phototransformation of dissolved organic matter to ammonium, dissolved inorganic carbon, and labile substrates supporting bacterial biomass across the Baltic Sea. J. Geophys. Res. Biogeo. 117, G01004 (2012).

    Article  Google Scholar 

  59. 59

    Sulzberger, B. & Durisch-Kaiser, E. Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat. Sci. 71, 104–126 (2009).

    Article  CAS  Google Scholar 

  60. 60

    Voss, M. et al. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Phil. Trans. R. Soc. B 368, 20130121 (2013).

    Article  CAS  Google Scholar 

  61. 61

    Llabrés, M. et al. Impact of elevated UVB radiation on marine biota: a meta-analysis. Glob. Ecol. Biogeogr. 22, 131–144 (2013).

    Article  Google Scholar 

  62. 62

    Connelly, S. J., Wolyniak, E. A., Williamson, C. E. & Jellison, K. L. Artificial UV-B and solar radiation reduce in vitro infectivity of the human pathogen Cryptosporidium parvum. Environ. Sci. Technol. 41, 7101–7106 (2007).

    Article  CAS  Google Scholar 

  63. 63

    King, B. J., Hoefel, D., Daminato, D. P., Fanok, S. & Monis, P. T. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters. J. Appl. Microbiol. 104, 1311–1323 (2008).

    Article  CAS  Google Scholar 

  64. 64

    Overholt, E. P. et al. Solar radiation decreases parasitism in Daphnia. Ecol. Lett. 15, 47–54 (2012).

    Article  Google Scholar 

  65. 65

    Ortiz-Santaliestra, M. E., Fisher, M. C., Fernandez-Beaskoetxea, S., Fernandez-Beneitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).

    Article  Google Scholar 

  66. 66

    Williamson, C. E. & Rose, K. C. When UV meets fresh water. Science 329, 637–639 (2010).

    Article  CAS  Google Scholar 

  67. 67

    Norval, M. et al. The human health effects of ozone depletion and interactions with climate change. Photochem. Photobiol. Sci. 10, 199–225 (2011).

    Article  CAS  Google Scholar 

  68. 68

    World Health Organization Environmental Health Criteria 160 — Ultraviolet radiation (WHO, 1994).

  69. 69

    Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nature Med. 18, 1286–1290 (2012).

    Article  CAS  Google Scholar 

  70. 70

    Holick, M. F. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J. Invest. Dermatol. 77, 51–58 (1981).

    Article  CAS  Google Scholar 

  71. 71

    Rogers, H. W. et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 146, 283–287 (2010).

    Article  Google Scholar 

  72. 72

    Forman, D. et al. (eds) Cancer Incidence in Five Continents Vol. X (International Agency for Research on Cancer, 2013);

    Google Scholar 

  73. 73

    Australian Institute of Health and Welfare & Australasian Association of Cancer Registries Cancer in Australia: An Overview, 2008 (Cancer Series Number 46, Australian Institute of Health and Welfare, 2008);

  74. 74

    Housman, T. S. et al. Skin cancer is among the most costly of all cancers to treat for the Medicare population. J. Am. Acad. Dermatol. 48, 425–429 (2003).

    Article  Google Scholar 

  75. 75

    Fransen, M. et al. Non-melanoma skin cancer in Australia. Med. J. Aust. 197, 565–568 (2012).

    Article  Google Scholar 

  76. 76

    Stanton, W. R., Janda, M., Baade, P. D. & Anderson, P. Primary prevention of skin cancer: a review of sun protection in Australia and internationally. Health Promot. Int. 19, 369–378 (2004).

    Article  Google Scholar 

  77. 77

    van Dijk, A. et al. Skin cancer risks avoided by the Montreal Protocol — worldwide modelling integrating coupled climate–chemistry models with a risk model for UV. Photochem. Photobiol. 89, 234–246 (2012).

    Article  CAS  Google Scholar 

  78. 78

    West, S. K., Longstreth, J. D., Munoz, B. E., Pitcher, H. M. & Duncan, D. D. Model of risk of cortical cataract in the US population with exposure to increased ultraviolet radiation due to stratospheric ozone depletion. Am. J. Epidemiol. 162, 1080–1088 (2005).

    Article  Google Scholar 

  79. 79

    den Outer, P. et al. Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res. 115, D10102 doi: 10.1029/2009JD012827 (2010).

    CAS  Article  Google Scholar 

  80. 80

    Lee-Taylor, J., Madronich, S., Fischer, C. & Mayer, B. in UV Radiation in Global Climate Change: Measurements, Modeling and Effects on Ecosystems (eds Gao, W. et al.) Ch. 1 (Springer-Verlag and Tsinghua Univ. Press, 2010).

    Google Scholar 

  81. 81

    Boyle, P., Dore, J. F., Autier, P. & Ringborg, U. Cancer of the skin: a forgotten problem in Europe. Ann. Oncol. 15, 5–6 (2004).

    Article  Google Scholar 

  82. 82

    Silva Idos, S. et al. Overseas sun exposure, nevus counts, and premature skin aging in young English women: a population-based survey. J. Invest. Dermatol. 129, 50–59 (2009).

    Article  CAS  Google Scholar 

  83. 83

    Albert, M. R. & Ostheimer, K. G. The evolution of current medical and popular attitudes toward ultraviolet light exposure: part 1. J. Am. Acad. Dermatol. 47, 930–937 (2002).

    Article  Google Scholar 

  84. 84

    Albert, M. R. & Ostheimer, K. G. The evolution of current medical and popular attitudes toward ultraviolet light exposure: part 2. J. Am. Acad. Dermatol. 48, 909–918 (2003).

    Article  Google Scholar 

  85. 85

    Ginde, A. A., Liu, M. C. & Camargo, C. A. Jr., Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004. Arch. Int. Med. 169, 626–632 (2009).

    Article  CAS  Google Scholar 

  86. 86

    Mansbach, J. M., Ginde, A. A. & Camargo, C. A. Jr Serum 25-hydroxyvitamin D levels among US children aged 1 to 11 years: Do children need more vitamin D? Pediatrics 124, 1404–1410 (2009).

    Article  Google Scholar 

  87. 87

    Lucas, R. M. et al. Sun exposure over a lifetime in Australian adults from latitudinally diverse regions. Photochem. Photobiol. 89, 737–744 (2013).

    Article  CAS  Google Scholar 

  88. 88

    Salzer, J. et al. Vitamin D as a protective factor in multiple sclerosis. Neurology 79, 2140–2145 (2012).

    Article  CAS  Google Scholar 

  89. 89

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    Article  CAS  Google Scholar 

  90. 90

    Lai, J. K., Lucas, R. M., Banks, E. & Ponsonby, A. L. Variability in vitamin D assays impairs clinical assessment of vitamin D status. Int. Med. J. 42, 43–50 (2012).

    Article  CAS  Google Scholar 

  91. 91

    Institute of Medicine Dietary Reference Intakes for Calcium and Vitamin D (Institute of Medicine of the National Academies, 2010).

  92. 92

    Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    Article  CAS  Google Scholar 

  93. 93

    Autier, P., Boniol, M., Pizot, C. & Mullie, P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2, 76–89 (2013).

    Article  CAS  Google Scholar 

  94. 94

    Liu, D. et al. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J. Invest. Dermatol. (2014).

  95. 95

    Dobbinson, S. et al. Prevalence and determinants of Australian adolescents' and adults' weekend sun protection and sunburn, summer 2003–2004. J. Am. Acad. Dermatol. 59, 602–614 (2008).

    Article  Google Scholar 

  96. 96

    van der Leun, J. C., Piacentini, R. D. & de Gruijl, F. R. Climate change and human skin cancer. Photochem. Photobiol. Sci. 7, 730–733 (2008).

    Article  CAS  Google Scholar 

  97. 97

    Tsiaras, W. G. & Weinstock, M. A. Factors influencing vitamin D status. Acta Derm. Venereol. 91, 115–124 (2011).

    Article  Google Scholar 

  98. 98

    Ustianowski, A., Shaffer, R., Collin, S., Wilkinson, R. J. & Davidson, R. N. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J. Infect. 50, 432–437 (2005).

    Article  CAS  Google Scholar 

  99. 99

    Ajavon, A-L. et al. Synthesis Report: Major Findings of the 2010 Assessments of the Scientific Assessment Panel (SAP), Environmental Effects Assessment Panel (EEAP), and Technology and Economic Assessment Panel (TEAP) (United Nations Environment Program, 2011).

    Google Scholar 

  100. 100

    Garcia, R. R., Kinnison, D. E. & Marsh, D. R. “World avoided” simulations with the whole atmosphere community climate model. J. Geophys. Res. Atmos. 117, D23303 (2012).

    Google Scholar 

Download references


We would like to acknowledge our fellow members of the UN Environmental Effects Assessment Panel for being part of the inspiration that has led to the present paper: A. Andrady, P. Aucamp, L. O. Björn, M. Caldwell, A. Cullen, F. de Gruijl, D. Erickson, W. Helbling, M. Ilyas, J. Longstreth, H. H. Redhwi, M. Shao, K. Solomon, Y. Takizawa, X. Tang, A. Torikai, J. van der Leun, S. Wilson and R. Worrest. This article has been reviewed in accordance with the US Environmental Protection Agency's (US EPA) peer- and administrative-review policies and approved for publication. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use by the US EPA.

Author information




All authors have helped to develop the paper. C.E.W., R.G.Z., R.M.L. and S.M. played major roles, equally contributing to the conceptualization and writing of the paper. J.F.B. provided content, organized and coordinated the paper and contributed comments and revisions on all the drafts. A.T.A. and C.L.B. contributed text to the terrestrial and aquatic sections. S.A.R. provided text and comments on the terrestrial ecosystems. M.N. contributed to the health section and provided comments on the drafts. B.S. made contributions particularly to the biogeochemical sections. A.F.B. and R.L.M. contributed input to the UV effects and the atmosphere. D.P.H. provided input to the aquatic section. N.D.P. helped with the initial drafts and writing.

Corresponding author

Correspondence to Janet F. Bornman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williamson, C., Zepp, R., Lucas, R. et al. Solar ultraviolet radiation in a changing climate. Nature Clim Change 4, 434–441 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing