Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct effects of anthropogenic aerosols on tropical cyclones

Abstract

Long-term observations have revealed large amplitude fluctuations in the frequency and intensity of tropical cyclones (TCs; refs 1, 2, 3, 4), but the anthropogenic impacts, including greenhouse gases and particulate matter pollution4,5, remain to be elucidated. Here, we show distinct aerosol effects on the development of TCs: the coupled microphysical and radiative effects of anthropogenic aerosols result in delayed development, weakened intensity and early dissipation, but an enlarged rainband and increased precipitation under polluted conditions. Our results imply that anthropogenic aerosols probably exhibit an opposite effect to that of greenhouse gases, highlighting the necessity of incorporating a realistic microphysical–radiative interaction of aerosols for accurate forecasting and climatic prediction of TCs in atmospheric models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tropical cyclone temporal evolution.
Figure 2: Vertical–radial cross-sections of azimuthally averaged radar reflectivity.
Figure 3: Horizontal distribution of the equivalent potential temperature.
Figure 4: Schematic of the microphysical and radiative effects of anthropogenic aerosols on TCs.

Similar content being viewed by others

References

  1. Emanuel, K. A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Article  CAS  Google Scholar 

  2. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

    Article  CAS  Google Scholar 

  3. Holland, G. J. & Webster, P. J. Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Phil. Trans. R. Soc. A 365, 2695–2716 (2007).

    Article  Google Scholar 

  4. Knutson, T. R. et al. Tropical cyclones and climate change. Nature Geosci. 3, 157–163 (2010).

    Article  CAS  Google Scholar 

  5. Rosenfeld, D. et al. Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteorol. Soc. 93, 987–1001 (2012).

    Article  Google Scholar 

  6. Emanuel, K. A. Downscaling CMIP5 climate models show increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

    Article  CAS  Google Scholar 

  7. Dunstone, N. J., Smith, D. M., Booth, B. B., Hermanson, L. & Eade, R. Anthropogenic aerosol forcing of Atlantic tropical storms. Nature Geosci. 6, 534–539 (2013).

    Article  CAS  Google Scholar 

  8. Zhang, R. et al. Intensification of Pacific storm track linked to Asian pollution. Proc. Natl Acad. Sci. USA 104, 5295–5299 (2007).

    Article  CAS  Google Scholar 

  9. Li, G., Wang, Y., Lee, K-H., Diao, Y. & Zhang, R. Increased winter precipitation over the North Pacific from 1984–1994 to 1995–2005 inferred from the Global Precipitation Climatology Project. Geophys. Res. Lett. 35, L13821 (2009).

    Article  Google Scholar 

  10. Wang, Y., Zhang, R. & Saravanan, R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nature Commun. 5, 3098 (2014).

    Article  Google Scholar 

  11. Fan, J., Zhang, R., Li, G. & Tao, W-K. Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res. 112, D14204 (2007).

    Article  Google Scholar 

  12. Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos Trans. 87, 233–244 (2006).

    Article  Google Scholar 

  13. Lau, K. M. & Kim, K.-M. How nature foiled the 2006 hurricane forecasts. Eos Trans. 88, 105–107 (2007).

    Article  Google Scholar 

  14. Dunion, J. P. & Velden, C. S. The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Am. Meteor. Soc. 85, 353–365 (2004).

    Article  Google Scholar 

  15. Zhang, H., McFarquhar, G. M., Saleeby, S. M. & Cotton, W. R. Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett. 34, L14812 (2007).

    Article  Google Scholar 

  16. Khain, A. P., Cohen, N., Lynn, B. & Pokrovsky, A. Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci. 65, 3652–3677 (2008).

    Article  Google Scholar 

  17. Carrió, G. G. & Cotton, W. R. Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys. 11, 2557–2567 (2011).

    Article  Google Scholar 

  18. Zhang, H., McFarquhar, G. M., Cotton, W. R. & Deng, Y. Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett. 36, L06802 (2009).

    Google Scholar 

  19. Rosenfeld, D., Khain, A., Lynn, B. & Woodley, W. L. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys. 7, 3411–3424 (2007).

    Article  CAS  Google Scholar 

  20. Li, G., Wang, Y. & Zhang, R. Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol–cloud interaction. J. Geophys. Res. 113, D15211 (2008).

    Article  Google Scholar 

  21. Fan, J. et al. Effects of aerosol optical properties on deep convective clouds and radiative forcing. J. Geophys. Res. 113, D08209 (2008).

    Article  Google Scholar 

  22. Levy, M. et al. Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. J. Geophys. Res. 118, 10518–10534 (2013).

    CAS  Google Scholar 

  23. Bates, T. S. et al. Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes. J. Geophys. Res. 113, D00F01 (2008).

    Article  Google Scholar 

  24. Zhang, F., Weng, C. Y., Sippel, J. A., Meng, Z. & Bishop, C. H. Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Weat. Rev. 137, 2105–2125 (2009).

    Article  Google Scholar 

  25. Komaromi, W. A., Majumdar, S. J. & Rappin, E. D. Diagnosing initial condition sensitivity of Typhoon Sinlaku and Hurricane Ike. Mon. Weat. Rev. 139, 3224–3242 (2008).

    Article  Google Scholar 

  26. Fan, J. et al. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl Acad. Sci. USA 110, E4581–E4590 (2013).

    Article  CAS  Google Scholar 

  27. Hawkins, H. F. & Imbembo, S. M. The structure of a small, intense hurricane—Inez 1966. Mon. Weat. Rev. 104, 418–442 (1976).

    Article  Google Scholar 

  28. Khain, A. P., Lynn, B. & Dudhia, J. Aerosol effects on intensity of landfalling hurricanes as seen from simulations with WRF model with spectral bin microphysics. J. Atmos. Sci. 67, 365–384 (2010).

    Article  Google Scholar 

  29. Lin, N. H. et al. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 78, 1–19 (2013).

    Article  CAS  Google Scholar 

  30. Lau, K. M. & Zhou, Y. P. Observed recent trends in tropical cyclone rainfall over the North Atlantic and the North Pacific. J. Geophys. Res. 117, D03104 (2012).

    Article  Google Scholar 

  31. Fan, J. et al. Simulations of cumulus clouds using a spectral microphysics cloud resolving model. J. Geophys. Res. 112, D04201 (2007).

    Article  Google Scholar 

  32. Wang, M. et al. The multi-scale aerosol-climate model PNNL-MMF: Model description and evaluation. Geosci. Model Dev. 4, 137–168 (2011).

    Article  Google Scholar 

  33. Zhao, C. et al. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett. 33, L16809 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Y.W. was supported by a NASA graduate fellowship in Earth Sciences. R.Z. acknowledges support from the Ministry of Science and Technology of China under award number 2013CB955800. We thank K.A. Emanuel, P. Liss, C. Schumacher and F. Zhang for helpful discussions. Supercomputing computational facilities were provided by the Texas A&M University. Y.W. acknowledges additional support by the NASA ROSES COUND program at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information

Authors and Affiliations

Authors

Contributions

K.L., Y.W. and R.Z. designed the research. K.L. and Y.W. conducted the research (performed the model simulations and analysed the data). Y.W., Y.L. and M.L. performed additional ensemble simulations and analysis. Y.W. and R.Z. wrote the manuscript.

Corresponding authors

Correspondence to Yuan Wang or Renyi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lee, KH., Lin, Y. et al. Distinct effects of anthropogenic aerosols on tropical cyclones. Nature Clim Change 4, 368–373 (2014). https://doi.org/10.1038/nclimate2144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing