Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of temperature on marine phytoplankton resource allocation and metabolism


Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans1. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex environment–biome interactions have not been studied on a larger scale. Here we use a set of integrative approaches that combine metatranscriptomes, biochemical data, cellular physiology and emergent phytoplankton growth strategies in a global ecosystems model, to show that temperature significantly affects eukaryotic phytoplankton metabolism with consequences for biogeochemical cycling under global warming. In particular, the rate of protein synthesis strongly increases under high temperatures even though the numbers of ribosomes and their associated rRNAs decreases. Thus, at higher temperatures, eukaryotic phytoplankton seem to require a lower density of ribosomes to produce the required amounts of cellular protein. The reduction of phosphate-rich ribosomes2 in warmer oceans will tend to produce higher organismal nitrogen (N) to phosphate (P) ratios, in turn increasing demand for N with consequences for the marine carbon cycle due to shifts towards N-limitation. Our integrative approach suggests that temperature plays a previously unrecognized, critical role in resource allocation and marine phytoplankton stoichiometry, with implications for the biogeochemical cycles that they drive.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sampling sites for eukaryotic phytoplankton metatranscriptomes and sequence distribution.
Figure 2: Heatmaps for algal groups and biological processes.
Figure 3: The impact of temperature on translation.
Figure 4: Phytoplankton cell model and N:P ratios.


  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. G. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS  Article  Google Scholar 

  2. Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swenson, N. G. & Enquist, B. J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 186, 593–608 (2010).

    CAS  Article  Google Scholar 

  3. Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    CAS  Article  Google Scholar 

  4. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    CAS  Article  Google Scholar 

  5. Boyce, D. G., Lewis, R. M. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    CAS  Article  Google Scholar 

  6. Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett. 32, L19606 (2005).

    Article  Google Scholar 

  7. Schlesinger, D. A. & Shuter, B. J. Patterns of growth and cell composition of freshwater algae in light-limited continuous cultures. J. Phycol. 17, 250–256 (1981).

    CAS  Article  Google Scholar 

  8. Shuter, B. A model of physiological adaptation in unicellular algae. J. Theoret. Biol. 78, 519–552 (1979).

    CAS  Article  Google Scholar 

  9. Weber, T. S. & Deutsch, C. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 489, 419–422 (2012).

    CAS  Article  Google Scholar 

  10. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    CAS  Article  Google Scholar 

  11. Bruggeman, J. & Kooijman, S. A. L. M. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol. Oceanogr. 52, 1533–1544 (2007).

    Article  Google Scholar 

  12. Clark, J. R., Lenton, T. M., Williams, H. T. P. & Daines, S. J. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. Limnol. Oceanogr. 58, 1008–1022 (2013).

    Article  Google Scholar 

  13. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38 (suppl. 1), D211–D222 (2010).

    CAS  Article  Google Scholar 

  14. Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  Article  Google Scholar 

  15. Brady, A. & Salzberg, S. L. Phymm and PhymmBL: Metagenomic phylogenetic classification with interpolated Markov models. Nature Methods 6, 673–676 (2009).

    CAS  Article  Google Scholar 

  16. Ashburner, M. et al. Gene Ontology: Tool for the unification of biology. Nature Genet. 25, 25–29 (2000).

    CAS  Article  Google Scholar 

  17. Nomura, M., Grouse, R. & Baughman, G. Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53, 75–117 (1984).

    CAS  Article  Google Scholar 

  18. Fraser, K. P. P., Clarke, A. & Peck, L. S. Low-temperature protein metabolism: Seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J. Exp. Biol. 205, 3077–3086 (2002).

    CAS  Google Scholar 

  19. Kim, K-Y. et al. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J. Exp. Bot. 55, 1153–1155 (2004).

    CAS  Article  Google Scholar 

  20. Mock, T. et al. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc. Natl Acad. Sci. USA 105, 1579–1584 (2008).

    CAS  Article  Google Scholar 

  21. Woolford, J. L. J. & Warner, J. R. in The Molecular And Cellular Biology of Yeast Saccharomyces: Genome Dynamics, Protein Synthesis And Energetics (eds Broach, J. R., Pringle, J. R. & Jones, E. W.) 587–625 (Cold Spring Harbor Laboratory Press, 1991).

    Google Scholar 

  22. Warner, J. R. The economics of ribosome biosynthesis in yeast. TIBS 24, 437–440 (1999).

    CAS  Google Scholar 

  23. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  Article  Google Scholar 

  24. Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K., Levin, S. A. & Lomas, M. W. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geosci. 6, 279–283 (2013).

    CAS  Article  Google Scholar 

  25. Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).

    CAS  Article  Google Scholar 

  26. Doney, S. C. Oceanography: Plankton in a warmer world. Nature 444, 695–696 (2006).

    CAS  Article  Google Scholar 

  27. Eppley, R. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  28. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. The Robert H. MacArthur Award Lecture-toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  29. Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12, 369–384 (2009).

    Article  Google Scholar 

  30. Regaudie-de-Gioux, A. & Duarte, C. M. Temperature dependence of planktonic metabolism in the ocean. Glob. Biogeochem. Cycles 26, 1–10 (2012).

    Article  Google Scholar 

Download references


Sequencing of ANT, EPAC and NPAC was funded by a Natural Environment Research Council (NERC) grant (MGF (NBAF) grant 197) and a 454 Life Sciences grant (Roche, 10Gb grant) awarded to T.M. and K.V. K.V. acknowledges the DFG for funding. Sequencing of ARC and NATL was funded by the EU FP7 project ‘Arctic Tipping Points’ awarded to G.A.P. We thank The Genome Analysis Centre (TGAC) in Norwich and Melanie Febrer for facilitating the work with 454 Life Sciences (Roche) in the US and UK. S.J.D., J.R.C. and T.M.L. acknowledge the Leverhulme Trust (F/00 204/AP) for funding. The PhD studentship of A.T. was funded by the Earth and Life Systems Alliance (ELSA) in Norwich. A.K. and T.M. acknowledge the Leverhulme Trust (F/00204/AU) for funding. Part of the bioinformatic analysis was performed on the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia. We thank S. Moxon for his patient support, discussions and suggestions. We thank W. Guo and A. Marchetti for providing us with samples from EPAC and M. Parker, E. V. Armbrust, and the ‘Sorcerer II’ crew (JCVI) for assistance with sampling of NPAC. G.A.P. acknowledges A. Ramos, E. Serrão and the crew of R/V Jan Mayen, University Tromso, Norway for assistance with sampling of ARC and NATL.

Author information

Authors and Affiliations



Metatranscriptome sample preparation: T.M., G.A.P., K.V. and C.U.; Bioinformatics: A.T. and V.M.; Western blots: A.K.; Quantitative PCR: J.S.; Growth experiments: A.K., J.S. and T.M.; Modelling: S.J.D., J.R.C., T.M.L.; T.M. designed the study and wrote the manuscript with help from S.J.D. and T.M.L. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to T. Mock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toseland, A., Daines, S., Clark, J. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Clim Change 3, 979–984 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing