Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impacts of climate change on terrestrial Earth surface systems

Abstract

National and international policy initiatives have focused on reducing carbon emissions as a means by which to limit future climate warming. Much less attention has been paid by policymakers to monitoring, modelling and managing the impacts of climate change on the dynamics of Earth surface systems, including glaciers, rivers, mountains and coasts. This is a critical omission, however, as Earth surface systems provide water and soil resources, sustain ecosystem services and strongly influence biogeochemical climate feedbacks in ways that are as yet uncertain. We argue that there is a significant policy gap regarding the management of Earth surface systems' impacts under climate change that needs to be closed to facilitate the sustainability of cross-national Earth surface resource use. It is also a significant challenge to the scientific community to better understand Earth surface systems' sensitivity to climate forcing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Variations in climate forcing and Earth surface system responses during the period AD 1550–1850 in Europe, including the Little Ice Age.

References

  1. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) (Cambridge Univ. Press, 2007).

  2. New, M., Liverman, D., Schroder, H. & Anderson, K. Four degrees and beyond: The potential for a global temperature increase of four degrees and its implications. Phil. Trans. R. Soc. A 369, 6–19 (2011).

    Article  Google Scholar 

  3. Prinn, R. et al. Scenarios with MIT integrated global systems model: Significant global warming regardless of different approaches. Climatic Change 104, 515–537 (2011).

    Article  CAS  Google Scholar 

  4. Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl Acad. Sci. USA 108, 20645–20649 (2011).

    Article  Google Scholar 

  5. Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17, 3633–3643 (2011).

    Article  Google Scholar 

  6. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  7. Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).

    Article  Google Scholar 

  8. Kostyack, J. et al. Beyond reserves and corridors: Policy solutions to facilitate the movement of plants and animals in a changing climate. BioScience 61, 713–719 (2011).

    Article  Google Scholar 

  9. Crossman, N. D., Bryan, B. A. & Summers, D. M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 18, 60–72 (2012).

    Article  Google Scholar 

  10. Phillips, J. D. Amplifiers, filters and geomorphic responses to climate change in Kentucky rivers. Climatic Change 103, 571–595 (2010).

    Article  Google Scholar 

  11. Knight, J. & Harrison, S. Evaluating the impacts of global warming on geomorphological systems. Ambio 41, 206–210 (2012).

    Article  Google Scholar 

  12. Murray, A. B. et al. Geomorphology, complexity, and the emerging science of the Earth's surface. Geomorphology 103, 496–505 (2009).

    Article  Google Scholar 

  13. Phillips, J. D. Changes, perturbations, and responses in geomorphic systems. Prog. Phys. Geog. 33, 17–30 (2009).

    Article  Google Scholar 

  14. Temme, A. J. A. M. & Veldkamp, A. Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales. Earth Surf. Proc. Land. 34, 573–589 (2009).

    Article  Google Scholar 

  15. Marchi, L. & D'Agostino, V. Estimation of debris-flow magnitude in the eastern Italian Alps. Earth Surf. Proc. Land. 29, 207–220 (2004).

    Article  Google Scholar 

  16. Crozier, M. J. Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surf. Proc. Land. 24, 825–833 (1999).

    Article  Google Scholar 

  17. Brardinoni, F., Hassan, M. A., Rollerson, T. & Maynard, D. Colluvial sediment dynamics in mountain drainage basins. Earth Planet. Sci. Lett. 284, 310–319 (2009).

    Article  CAS  Google Scholar 

  18. Dikau, R. & Schrott, L. The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC): Main objectives and results. Geomorphology 30, 1–12 (1999).

    Article  Google Scholar 

  19. Street-Perrott, F. A. & Barker, P. A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf. Proc. Land. 33, 1436–1457 (2008).

    Article  CAS  Google Scholar 

  20. Hirohiko, K., Yasumasa, O. & Naotatsu, S. Relationship between weathering, mountain uplift, and climate during the Cenozoic as deduced from the global carbon-strontium cycle model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 270, 139–149 (2008).

    Article  Google Scholar 

  21. Arndt, S., Regnier, P., Godderis, Y. & Donnadieu, Y. GEOCLIM reloaded (v 1.0): a new coupled earth system model for past climate change. Geosci. Model Devel. 4, 451–481 (2011).

    Article  Google Scholar 

  22. Roelandt, C., Godderis, Y., Bonnet, M. P. & Sondag, F. Coupled modeling of biospheric and chemical weathering processes at the continental scale. Global Biogeochem. Cycles 24, http://dx.doi.org/10.1029/2008GB003420 (2011).

  23. Von Rad. U. et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30 000 years documented in laminate sediments off Pakistan. Palaeogeog. Palaeoclimatol. Palaeoecol. 152, 129–161 (1999).

    Article  Google Scholar 

  24. Hrena, M. T., Chamberlain, C. P., Hilley, G. E., Blisniuk, P. M. & Bookhagen, B. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra River: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan Plateau and eastern syntaxis of the Himalaya. Geochim. Cosmochim. Acta 71, 2907–2935 (2007).

    Article  CAS  Google Scholar 

  25. Newton, A., Carruthers, T. J. B. & Icely, J. The coastal syndromes and hotspots on the coast. Estuar. Coast. Shelf Sci. 96, 39–47 (2012).

    Article  Google Scholar 

  26. French, J. Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Mar. Geol. 235, 119–136 (2006).

    Article  Google Scholar 

  27. Gislason, S. R. et al. Direct evidence of the feedback between climate and weathering. Earth Planet. Sci. Lett. 277, 213–222 (2009).

    Article  CAS  Google Scholar 

  28. Turnbull, L., Wainwright, J., Brazier, R. E. & Bol, R. Biotic and abiotic changes in ecosystem structure over a shrub-encroachment gradient in the southwestern USA. Ecosystems 13, 1239–1255 (2010).

    Article  Google Scholar 

  29. Liggins, F., Betts, R. A. & McGuire, B. Projected future climate changes in the context of geological and geomorphological hazards. Phil. Trans. R. Soc. Lond. A 368, 2347–2367 (2010).

    Article  Google Scholar 

  30. St Clair, S. B. & Lynch, J. P. The opening of Pandora's Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335, 101–115 (2010).

    Article  CAS  Google Scholar 

  31. Murray, A. B., Knaapen, M. A. F., Tal, M. & Kirwan, M. L. Biomorphodynamics: Physical–biological feedbacks that shape landscapes. Water Resour. Res. 44, W11301 (2008).

    Article  Google Scholar 

  32. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

  33. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth's temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

    Article  CAS  Google Scholar 

  34. Holden, P. B., Edwards, N. R., Oliver, I. C., Lenton, T. M. & Wilkinson, R. D. A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1. Clim. Dynam. 35, 785–806 (2010).

    Article  Google Scholar 

  35. Bergengren, J. C., Waliser, D. E. & Yung, Y. L. Ecological sensitivity: A biospheric view of climate change. Climatic Change 107, 433–457 (2011).

    Article  CAS  Google Scholar 

  36. Annan, J. D. & Hargreaves, J. C. On the generation and interpretation of probabilistic estimates of climate sensitivity. Climatic Change 104, 423–436 (2011).

    Article  Google Scholar 

  37. Lucarini, V., Fraedrich, K. & Lunkeit, F. Thermodynamics of climate change: Generalized sensitivities. Atmos. Chem. Phys. 10, 9729–9737 (2010).

    Article  CAS  Google Scholar 

  38. Roe, G. H. & Armour, K. C. How sensitive is climate sensitivity? Geophys. Res. Lett. 38, L14708 (2011).

    Article  Google Scholar 

  39. Hegerl, G. C. & Russon, T. Using the past to predict the future? Science 334, 1360–1361 (2011).

    Article  CAS  Google Scholar 

  40. Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011).

    Article  CAS  Google Scholar 

  41. Loutre, M-F. & Berger, A. Marine Isotope Stage 11 as an analogue for the present interglacial. Glob. Planet. Change 36, 209–217 (2003).

    Article  Google Scholar 

  42. Haywood, A. M. et al. Are there pre-Quaternary geological analogues for a future greenhouse warming? Phil. Trans. R. Soc. A 369, 933–956 (2011).

    Article  CAS  Google Scholar 

  43. Kirk-Davidoff, D. B. On the diagnosis of climate sensitivity using observations of fluctuations. Atmos. Chem. Phys. 9, 813–822 (2009).

    Article  CAS  Google Scholar 

  44. Lunt, D. J. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geosci. 3, 60–64 (2010).

    Article  CAS  Google Scholar 

  45. Olson, R. et al. A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth system model. J. Geophys. Res. 117, D04103 (2012).

    Article  Google Scholar 

  46. Harrison, S. in Periglacial and Paraglacial Processes and Environments (eds Knight, J. & Harrison, S.) 257–265 (Geological Society London, 2009).

    Google Scholar 

  47. Anderson, B. et al. Climate sensitivity of a high-precipitation glacier in New Zealand. J. Glaciol. 56, 114–128 (2010).

    Article  Google Scholar 

  48. Ren, D. et al. The Greenland ice sheet response to transient climate change. J. Clim. 24, 3469–3483 (2011).

    Article  Google Scholar 

  49. Warburton, J. Sediment budgets and rates of sediment transfer across cold environments in Europe: A commentary. Geogr. Ann. A 89, 95–100 (2007).

    Article  Google Scholar 

  50. Brown, A. G. et al. From sedimentary records to sediment budgets: Multiple approaches to catchment sediment flux. Geomorphology 108, 35–47 (2009).

    Article  Google Scholar 

  51. Walling, D. E. & Collins, A. L. The catchment sediment budget as a management tool. Environ. Sci. Policy 11, 136–143 (2008).

    Article  Google Scholar 

  52. Rózsa, P. & Novák, T. Mapping anthropic geomorphological sensitivity on a global scale. Z. Geomorphol. 55 (suppl. 1), 109–117 (2011).

    Article  Google Scholar 

  53. Starek, M. J. et al. Modeling and analysis of landscape evolution using airborne, terrestrial, and laboratory laser scanning. Geosphere 7, 1340–1356 (2011).

    Article  Google Scholar 

  54. Irvine-Fynn, T. D. L., Barrand, N. E., Porter, P. R., Hodson, A. J. & Murray, T. Recent high-Arctic glacial sediment redistribution: A process perspective using airborne LiDAR. Geomorphology 125, 27–39 (2011).

    Article  Google Scholar 

  55. Amoudry, L. O. & Souza, A. J. Deterministic coastal morphological and sediment transport modeling: A review and discussion. Rev. Geophys. 49, RG2002 (2011).

    Article  Google Scholar 

  56. Kabir, M. A., Dutta, D. & Hironaka, S. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin. Hydrol. Earth Syst. Sci. 15, 1307–1321 (2011).

    Article  Google Scholar 

  57. Schumm, S. A. Geomorphic thresholds: The concept and its applications. Trans. I. Brit. Geogr. 4, 485–515 (1979).

    Article  Google Scholar 

  58. Downs, P. W. & Gregory, K. J. in Landscape Sensitivity (eds Thomas, D. S. G. & Allison, R. J.) 15–30 (Wiley, 1993).

    Google Scholar 

  59. Carter, L., Orpin, A. R. & Kuehl, S. A. From mountain source to ocean sink — the passage of sediment across an active margin, Waipaoa Sedimentary System, New Zealand. Mar. Geol. 270, 1–10 (2010).

    Article  Google Scholar 

  60. Macklin, M. G. & Lewin, J. Alluvial responses to the changing Earth system. Earth Surf. Proc. Land. 33, 1374–1395 (2008).

    Article  Google Scholar 

  61. Cowie, P. A. et al. New constraints on sediment-flux-dependent river incision: Implications for extracting tectonic signals from river profiles. Geology 36, 535–538 (2008).

    Article  Google Scholar 

  62. Brooks, A. P. & Brierley, G. J. Geomorphic responses of lower Bega River to catchment disturbance, 1851–1926 Geomorphology 18, 291–304 (1997).

    Article  Google Scholar 

  63. Hughes, A. O., Croke, J. C., Pietsch, T. J. & Olley, J. M. Changes in the rates of floodplain and in-channel bench accretion in response to catchment disturbance, central Queensland, Australia. Geomorphology 114, 338–347 (2010).

    Article  Google Scholar 

  64. Hoffmann, T. et al. Human impact on fluvial regimes and sediment flux during the Holocene: Review and future research agenda. Glob. Planet. Change 72, 87–98 (2010).

    Article  Google Scholar 

  65. Arnaud-Fassetta, G. & Provansal, M. High frequency variations of water flux and sediment discharge during the Little Ice Age (1586–1725 AD) in the Rhone Delta (Mediterranean France). Relationship to the catchment basin. Hydrobiologia 410, 241–250 (1999).

    Article  CAS  Google Scholar 

  66. Grove, A. T. The “Little Ice Age” and its geomorphological consequences in Mediterranean Europe. Climatic Change 48, 121–136 (2001).

    Article  Google Scholar 

  67. Grove, J. M. & Battagel, A. Tax records from western Norway, as an index of Little Ice Age environmental and economic deterioration. Climatic Change 5, 265–282 (1983).

    Article  Google Scholar 

  68. Parry, M. et al. Millions at risk: Defining critical climate change threats and targets. Glob. Environ. Change 11, 181–183 (2001).

    Article  Google Scholar 

  69. Perch-Nielsen, S-L., Bättig, M. B. & Imboden, D. Exploring the link between climate change and migration. Climatic Change 91, 375–393 (2008).

    Article  Google Scholar 

  70. Hooke, R. LeB. On the history of humans as geomorphic agents. Geology 28, 843–846 (2000).

    Article  Google Scholar 

  71. Wilkinson, B. H. & McElroy, B. J. The impact of humans on continental erosion and sedimentation. Geol. Soc. Am. Bull. 119, 140–156 (2007).

    Article  Google Scholar 

  72. Syvitski, J. P. M. & Kettner, A. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 369, 957–975 (2011).

    Article  Google Scholar 

  73. Thomas, C. D. et al. A framework for assessing threats and benefits to species responding to climate change. Method. Ecol. Evol. 2, 125–142 (2011).

    Article  Google Scholar 

  74. Haeberli, W., Hoelzle, M., Paul, F. & Zemp, M. Integrated monitoring of mountain glaciers as key indicators of global climate change: The European Alps. Ann. Glaciology 46, 150–160 (2007).

    Article  Google Scholar 

  75. Hilker, N., Badoux, A. & Hegg, C. The Swiss flood and landslide damage database 1972–2007 Nat. Hazard. Earth Sys. Sci. 9, 913–925 (2009).

    Article  Google Scholar 

  76. Betts, R. Implications of land ecosystem–atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59, 602–615 (2007).

    Article  CAS  Google Scholar 

  77. Malcolm, J. R., Markham, A., Neilson, R. P. & Garaci, M. Estimated migration rates under scenarios of global climate change. J. Biogeogr. 29, 835–850 (2002).

    Article  Google Scholar 

  78. Syvitski, J. The Anthropocene: An epoch of our making. Glob. Change IGBP 78, 12–15 (2012).

    Google Scholar 

  79. Beylich, A. A., Lamoureux, S. F. & Decaulne, A. Developing frameworks for studies on sedimentary fluxes and budgets in changing cold environments. Quaest. Geogr. 30, 5–18 (2011).

    Google Scholar 

  80. Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and human's battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  81. Anderson, K. & Bows, A. Beyond 'dangerous' climate change: Emission scenarios for a new world. Phil. Trans. R. Soc. A 369, 20–44 (2011).

    Article  CAS  Google Scholar 

  82. Yan, Y. et al. Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series. Glob. Change Biol. 14, 1690–1702 (2008).

    Article  Google Scholar 

  83. Polson, D. et al. Estimation of spatial apportionment of greenhouse gas emissions for the UK using boundary layer measurements and inverse modelling technique. Atmos. Environ. 45, 1042–1049 (2011).

    Article  CAS  Google Scholar 

  84. Lun, F., Li, W. H. & Liu, Y. Complete forest carbon cycle and budget in China, 1999–2008. Forest Ecol. Manag. 264, 81–89 (2012).

    Article  Google Scholar 

  85. Davis, C. M. & Fox, J. F. Sediment fingerprinting: Review of the method and future improvements for allocating nonpoint source pollution. J. Environ. Eng. 135, 490–504 (2009).

    Article  CAS  Google Scholar 

  86. Steffen, W. et al. The Anthropocene: From global change to planetary stewardship. Ambio 40, 739–761 (2011).

    Article  Google Scholar 

  87. Woodroffe, C. D. & Murray-Wallace, C. V. Sea-level rise and coastal change: The past as a guide to the future. Quat. Sci. Rev. (in the press).

  88. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100, 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117–161 (2011).

    Article  Google Scholar 

  89. Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim. Dynam. 26, 387–405 (2006).

    Article  Google Scholar 

  90. Greenland Summit Ice Cores CD-ROM from the National Snow and Ice Data Center, University of Colorado at Boulder, and the World Data Center-A for Paleoclimatology, National Geophysical Data Center, Boulder, Colorado (1997); available via http://go.nature.com/th48gX

  91. Stoffel, M. et al. Analyzing rockfall activity (1600–2002) in a protection forest — A case study using dendrogeomorphology. Geomorphology 68, 224–241 (2005).

    Article  Google Scholar 

  92. Lamb, H. H. Climatic variation and changes in the wind and ocean circulation: the Little Ice Age in the northeast Atlantic. Quat. Res. 11, 1–20 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Murray for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Knight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knight, J., Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nature Clim Change 3, 24–29 (2013). https://doi.org/10.1038/nclimate1660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing