Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orbital forcing of tree-ring data

Subjects

Abstract

Solar insolation changes, resulting from long-term oscillations of orbital configurations1, are an important driver of Holocene climate2,3. The forcing is substantial over the past 2,000 years, up to four times as large as the 1.6 W m−2 net anthropogenic forcing since 1750 (ref. 4), but the trend varies considerably over time, space and with season5. Using numerous high-latitude proxy records, slow orbital changes have recently been shown6 to gradually force boreal summer temperature cooling over the common era. Here, we present new evidence based on maximum latewood density data from northern Scandinavia, indicating that this cooling trend was stronger (−0.31 °C per 1,000 years, ±0.03 °C) than previously reported, and demonstrate that this signature is missing in published tree-ring proxy records. The long-term trend now revealed in maximum latewood density data is in line with coupled general circulation models7,8 indicating albedo-driven feedback mechanisms and substantial summer cooling over the past two millennia in northern boreal and Arctic latitudes. These findings, together with the missing orbital signature in published dendrochronological records, suggest that large-scale near-surface air-temperature reconstructions9,10,11,12,13 relying on tree-ring data may underestimate pre-instrumental temperatures including warmth during Medieval and Roman times.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: High-precision density data derived from northern Scandinavian P. sylvestris trees.
Figure 2: N-scan JJA temperature reconstruction and fit with regional instrumental data.
Figure 3: Comparison of N-scan with decadally resolved Arctic proxy records.

References

  1. Milankovitch, M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. (Königlich Serbische Akademie, 1941).

    Google Scholar 

  2. Wanner, H. et al. Mid- to late Holocene climate change: An overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

    Article  Google Scholar 

  3. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).

    Article  Google Scholar 

  4. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  5. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  6. Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1339 (2009).

    CAS  Article  Google Scholar 

  7. Zorita, E., Gonzlez-Rouco, F., von Storch, H., Montavez, J. P. & Valero, F. Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys. Res. Lett. 32, L08707 (2005).

    Article  Google Scholar 

  8. Fischer, N. & Jungclaus, J. H. Evolution of the seasonal temperature cycle in a transient Holocene simulation: Orbital forcing and sea-ice. Clim. Past 7, 1139–1148 (2011).

    Article  Google Scholar 

  9. Esper, J., Cook, E. & Schweingruber, F. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–2253 (2002).

    CAS  Article  Google Scholar 

  10. Frank, D., Esper, J. & Cook, E. R. Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys. Res. Lett. 34, L16709 (2007).

    Article  Google Scholar 

  11. Hegerl, G. C. et al. Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Clim. 20, 650–666 (2007).

    Article  Google Scholar 

  12. Mann, M. E., Bradley, R. S. & Hughes, M. K. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–762 (1999).

    Article  Google Scholar 

  13. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    CAS  Article  Google Scholar 

  14. Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

    CAS  Article  Google Scholar 

  15. Laepple, T., Werner, M. & Lohmann, G. Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales. Nature 471, 91–94 (2011).

    CAS  Article  Google Scholar 

  16. Frank, D., Esper, J., Zorita, E. & Wilson, R. A noodle, hockey stick, and spaghetti plate: A perspective on high-resolution paleoclimatology. Wiley Interdiscipl. Rev. Clim. Change 1, http://dx.doi.org/10.1002/wcc.53(2010).

  17. Esper, J., Frank, D. C. & Wilson, R. J. S. Climate reconstructions: Low frequency ambition and high frequency ratification. Eos 85, 113, 130 (2004).

    Article  Google Scholar 

  18. Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A. & Funkhouser, G. The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5, 229–237 (1995).

    Article  Google Scholar 

  19. Schweingruber, F. H., Bartholin, T., Schär, E. & Briffa, K. R. Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17, 559–566 (1988).

    Article  Google Scholar 

  20. Esper, J. et al. Trends and uncertainties in Siberian indicators of 20th century warming. Glob. Change Biol. 16, 386–398 (2010).

    Article  Google Scholar 

  21. Briffa, K. R. et al. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Philos. Trans. R. Soc. B 363, 2269–2282 (2008).

    Article  Google Scholar 

  22. Kerwin, M. W. et al. The role of oceanic forcing in mid-Holocene northern hemisphere climatic change. Paleoceanography 14, 200–210 (1999).

    Article  Google Scholar 

  23. Esper, J. et al. Climate: Past ranges and future changes. Quat. Sci. Rev. 24, 2164–2166 (2005).

    Article  Google Scholar 

  24. Frank, D. & Esper, J. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network for the European Alps. Dendrochronologia 22, 107–121 (2005).

    Article  Google Scholar 

  25. Frank, D., Büntgen, U., Böhm, R., Maugeri, M. & Esper, J. Warmer early instrumental measurements versus colder reconstructed temperatures: Shooting at a moving target. Quat. Sci. Rev. 26, 3298–3310 (2007).

    Article  Google Scholar 

  26. Esper, J., Cook, P. J., Krusic, K., Peters, F. H. & Schweingruber, Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res. 59, 81–98 (2003).

    Google Scholar 

  27. Moser, L. et al. Timing and duration of European larch growing season along an altitudinal gradient in the Swiss Alps. Tree Physiol. 30, 285–233 (2010).

    Article  Google Scholar 

  28. Schweingruber, F. H., Fritts, H. C., Bräker, O. U., Drew, L. G. & Schaer, E. The X-ray technique as applied to dendroclimatology. Tree-Ring Bull. 38, 61 (1978).

    Google Scholar 

  29. Lee, T., Zwiers, F. & Tsao, M. Evaluation of proxy-based millennial reconstruction methods. Clim. Dynam. 31, 263–281 (2008).

    Article  Google Scholar 

  30. Cook, E. R., Briffa, K. & Jones, P. D. Spatial regression methods in dendroclimatology: A review and comparison of techniques. Int. J. Climatol. 14, 379–402 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. S. Kaufman for comments and H. Grudd for help with fieldwork. Supported by the Mainz Geocycles Research Centre and Palaeoweather Group, the European Union projects Carbo-Extreme (226701), CIRCE (36961) and ACQWA (212250), the Swiss National Science Foundation project INTEGRAL (121859), the German Science Foundation project PRIME (LU1608/1-1) and the Eva Mayr-Stihl Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.E., D.C.F., M.T., E.Z., R.J.S.W. and U.B. designed the study. Field sampling and measurements were done by J.E., D.C.F., M.T., R.J.S., U.B., D.N. and A.V. J.E., D.C.F., E.Z. and U.B. carried out the analysis with input from R.J.S., J.L., S.H., N.F. and S.W. All authors contributed to discussion, interpretation and writing the paper.

Corresponding author

Correspondence to Jan Esper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2644 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Esper, J., Frank, D., Timonen, M. et al. Orbital forcing of tree-ring data. Nature Clim Change 2, 862–866 (2012). https://doi.org/10.1038/nclimate1589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1589

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing