Climate change-driven species' range shifts filtered by photoperiodism

Abstract

Forecasts of species range shifts as a result of climate change are essential, because invasions by exotic species shape biodiversity and therefore ecosystem functions and services. Ecologists have focused on propagule pressure (for example, the number of individuals and invasion events), the characteristics of an invading species, and its new abiotic and biotic environment to predict the likelihood of range expansion and invasion. Here, we emphasize the role of photoperiodic response on the range expansion of species. Unlike temperature, the latitudinal gradient of seasonal changes in day length is a stable, abiotic environmental factor that does not change with local or global climate. Predicting range expansions across latitudes and the subsequent consequences for native communities requires a more comprehensive understanding of how species use day length to coordinate seasonal growth, reproduction, physiology and synchronization of life cycles with interacting individuals and species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The effect of latitude on the seasonality of day length.
Figure 2: World climate map demonstrating that comparable climate zones are present at higher latitudes in Western Europe compared with those in North America.

References

  1. 1

    Křivánek, M., Pyšek, P. & Jarošík, V. Planting history and propagule pressure as predictors of invasion by woody species in a temperate region. Conserv. Biol. 20, 1487–1498 (2006).

    Article  Google Scholar 

  2. 2

    Webster, C. R., Jenkins, M. A. & Jose, S. Woody invaders and the challenges they pose to forest ecosystems in the eastern United States. J. Forest. 104, 366–374 (2006).

    Google Scholar 

  3. 3

    Feehan, J., Harley, M. & van Minnen, J. Climate change in Europe: impact on terrestrial ecosystems and bio-diversity. Agron. Sust. Dev. 29, 409–421 (2009).

    Article  Google Scholar 

  4. 4

    Walther, G-R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009).

    Article  Google Scholar 

  5. 5

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA 102, 8245–8250 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Tewksbury, J. J., Sheldon, K. S. & Ettinger, A. K. Moving farther and faster. Nature Clim. Change 1, 396–397

  9. 9

    Davis, M. A. et al. Don't judge species on their origins. Nature 474, 153–154 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  Article  Google Scholar 

  11. 11

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article  Google Scholar 

  12. 12

    Hulme, P. E., Pyšek, P., Nentwig, W. & Vilà, M. Will threat of biological invasions unite the European Union? Science 324, 40–41 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. Environmental and economic costs of nonindegenous species in the United States. BioScience 50, 53–65 (2000).

    Article  Google Scholar 

  14. 14

    Elith, J. et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article  Google Scholar 

  15. 15

    Thuiller, W. et al. Predicting global change impacts on plant species' distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).

    Article  Google Scholar 

  16. 16

    Simberloff, D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40, 81–102 (2009).

    Article  Google Scholar 

  17. 17

    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Syst. 41, 59–80 (2010).

    Article  Google Scholar 

  18. 18

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article  Google Scholar 

  19. 19

    Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).

    Article  Google Scholar 

  20. 20

    Gevrey, M. & Worner, S. P. Prediction of global distribution of insect pest species in relation to climate by using an ecological informatics method. J. Ecol. Entomol. 99, 979–986 (2006).

    Article  Google Scholar 

  21. 21

    Nelson, R. J., Denlinger, D. L. & Somers, D. E. (eds) Photoperiodism, the Biological Calendar (Oxford Univ. Press, 2010).

    Google Scholar 

  22. 22

    Simpson, G. G. & Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Sakai, A. & Larcher, W. Frost Survival in Plants: Responses and Adaptation to Freezing Stress (Springer-Verlag, 1987).

    Google Scholar 

  24. 24

    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).

    Article  Google Scholar 

  25. 25

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).

    Article  Google Scholar 

  26. 26

    Bradshaw, W. E. & Holzapfel, C. M. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72, 147–166 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Putterill, J., Laurie, R. & Macknight, R. It's time to flower: The genetic control of flowering time. BioEssays 26, 363–373 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668–670 (1992).

    Article  Google Scholar 

  29. 29

    Hard, J. J., Bradshaw, W. E. & Holzapfel, C. M. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat. 142, 457–473 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Bradshaw, W. E. & Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl Acad. Sci. USA 98, 14509–14511 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Réale, D., Berteaux, D., McAdam, A. G. & Boutin, S. Lifetime selection on heritable life-history traits in a natural population of red squirrels. Evolution 57, 2416–2423 (2003).

    Article  Google Scholar 

  32. 32

    Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Schmidt, P. S., Matzkin, L. M., Ippolity, M. & Eanes, W. F. Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59, 2616–2625 (2005).

    Article  Google Scholar 

  34. 34

    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Tauber, E. et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895–1898 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Bradshaw, W. E. & Holzapfel, C. M. Genetic response to rapid climate change: It's seasonal timing that matters. Mol. Ecol. 17, 157–166 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Bradshaw, W. E., Quebodeaux, M. C. & Holzapfel, C. M. Ciracadian rhythmicity and photoperiodism in the pitcher-plant mosquito: Adaptive response to the photic environment or correlated response to the seasonal environment? Am. Nat. 161, 735–378 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Roff, D. A. The evolution of genetic correlations: An analysis of patterns. Evolution 50, 1392–1403

  39. 39

    Etterson, J. R. & Shaw, R. G. Constrain to adaptive evolution in response to global warming. Science 294, 151–154 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Ahlholm, J. et al. Micro-fungi and invertebrate herbivores on birch trees: Fungal mediated plant-herbivore interactions or responses to host quality? Ecol. Lett. 5, 648–655 (2002).

    Article  Google Scholar 

  41. 41

    Baer, C. F. & Lynch, M. Correlated evolution of life-history with size at maturity in Daphnia pulicaria: Patterns within and between populations. Genet. Res. 81, 123–132 (2003).

    Article  Google Scholar 

  42. 42

    Donohue, K. et al. Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution 59, 740–757 (2005).

    Google Scholar 

  43. 43

    Bradshaw, W. E., Emerson, K. J. & Holzapfel, C. M. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity http://dx.doi.org/10.1038/hdy.2011.108 (2011).

  44. 44

    Dewar, R. C. & Watt, A. D. Predicting changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89, 557–559 (1992).

    CAS  Article  Google Scholar 

  45. 45

    Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B. 265, 1867–1870 (1998).

    Article  Google Scholar 

  46. 46

    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    Article  Google Scholar 

  48. 48

    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Thomas, C. D. et al. Ecological and evolutionary processes at expending range margins. Nature 411, 577–581 (2001).

    CAS  Article  Google Scholar 

  50. 50

    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Niemelä, P. & Mattson, W. J. Invasion of North American forests by European phytophagous insects. Legacy of the European crucible? BioScience 46, 741–753 (1996).

    Article  Google Scholar 

  52. 52

    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    Article  Google Scholar 

  53. 53

    Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).

    Article  Google Scholar 

  54. 54

    Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  55. 55

    IPCC Climate Change 2007: Impacts, Adaptations and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) (Cambridge Univ. Press, 2007).

  56. 56

    Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).

    Article  Google Scholar 

  57. 57

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS  Article  Google Scholar 

  58. 58

    Dahl, E. On the relationship between summer temperature and the distribution of alpine vascular plants in the lowlands of Fennoscandinavia. Oikos 3, 22–52 (1951).

    Article  Google Scholar 

  59. 59

    Wareing, P. Photoperiodism in woody plants. Annu. Rev. Plant Physiol. 7, 191–214 (1956).

    CAS  Article  Google Scholar 

  60. 60

    Campbell, R. K. & Sorensen, F. C. Cold-acclimation in seedling Douglas-fir related to phenology and provenance. Ecology 54, 1148–1151 (1973).

    Article  Google Scholar 

  61. 61

    Repo, T., Zhang, G., Ryyppö, A., Rikala, R. & Vuorinen, M. The relation between growth cessation and frost hardening in Scots pines of different origins. Trees 14, 456–464 (2000).

    Article  Google Scholar 

  62. 62

    Savolainen, O., Pyhäjärvi, T. & Knürr, T. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38, 595–619 (2007).

    Article  Google Scholar 

  63. 63

    Bigras, F. & D'Aoust, A. L. Influence of photoperiod on shoot and root frost tolerance and bud phenology of white spruce seedlings (Picea glauca). Can. J. Forest Res. 23, 219–228 (1993).

    Article  Google Scholar 

  64. 64

    Heide, O. M. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. J. Exp. Bot. http://dx.doi.org/10.1093/jxb/err213 (2011).

  65. 65

    Taulavuori, E., Taulavuori, K., Niinimaa, A. & Laine, K. Effect of ecotype and latitude on growth, frost hardiness, and oxidative stress of south to north transplanted Scots pine seedlings. Int. J. Forest Res. 2010, 162084 (2010).

    Article  Google Scholar 

  66. 66

    Taulavuori, K., Sarala, M. & Taulavuori, E. Growth responses of trees to Arctic light environment. Prog. Bot. 71, 157–168 (2010).

    Google Scholar 

  67. 67

    Sarala, M., Taulavuori, E., Karhu, J., Laine, K. & Taulavuori, K. Growth and pigmentation of various species under blue light depletion. Boreal Environ. Res. 16, 381–394 (2011).

    Google Scholar 

  68. 68

    Peltonen-Sainio, P., Jauhiainen, L., Hakala, K. & Ojanen, H. Climate change and prolongation of growing season: Changes in regional potential for field crop production in Finland. Agr. Food Sci. 18, 171–190 (2009).

    Article  Google Scholar 

  69. 69

    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112 (2011).

    Article  Google Scholar 

  70. 70

    Trnka, M. et al. Agroclimatic conditions in Europe under climate change. Glob. Change Biol. 17, 2298–2318 (2011).

    Article  Google Scholar 

  71. 71

    Vänninen, I. et al. Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture. Agr. Food Sci. 20, 96–114 (2011).

    Article  Google Scholar 

  72. 72

    Schumann, G. L. Plant Diseases: Their Biology and Social Impact (APS Press, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank S. Faeth and I. Saloniemi for invaluable comments on the manuscript and H. Ojanen for preparing the world climate map. This study was funded by the Academy of Finland (project number 137909).

Author information

Affiliations

Authors

Contributions

K.S. led the creation and writing of the paper with inputs from all authors. All authors participated in the literature survey of their expertise (K.S.: climate change, and general ecology and evolution; K.T.: photoperiodism; T.H.: climate change, weeds; P.E.G.: crop species; C.E.H.: crop species; I.V.: pests; A.N.: pests; M.H.: pathogens).

Corresponding author

Correspondence to Kari Saikkonen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saikkonen, K., Taulavuori, K., Hyvönen, T. et al. Climate change-driven species' range shifts filtered by photoperiodism. Nature Clim Change 2, 239–242 (2012). https://doi.org/10.1038/nclimate1430

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing