Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global radiative forcing from contrail cirrus

Abstract

Aviation makes a significant contribution to anthropogenic climate forcing. The impacts arise from emissions of greenhouse gases, aerosols and nitrogen oxides, and from changes in cloudiness in the upper troposphere. An important but poorly understood component of this forcing is caused by ‘contrail cirrus’—a type of cloud that consist of young line-shaped contrails and the older irregularly shaped contrails that arise from them. Here we use a global climate model that captures the whole life cycle of these man-made clouds to simulate their global coverage, as well as the changes in natural cloudiness that they induce. We show that the radiative forcing associated with contrail cirrus as a whole is about nine times larger than that from line-shaped contrails alone. We also find that contrail cirrus cause a significant decrease in natural cloudiness, which partly offsets their warming effect. Nevertheless, net radiative forcing due to contrail cirrus remains the largest single radiative-forcing component associated with aviation. Our findings regarding global radiative forcing by contrail cirrus will allow their effects to be included in studies assessing the impacts of aviation on climate and appropriate mitigation options.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contrail-cirrus and young-contrail coverage for the year 2002 as simulated by ECHAM4–CCMod.
Figure 2
Figure 3: Contrail-cirrus radiative forcing and optical depth at 250 hPa for the year 2002.
Figure 4: Change in natural-cirrus coverage due to the presence of contrail cirrus.

Similar content being viewed by others

References

  1. Boucher, O. Air traffic may increase cirrus cloudiness. Nature 397, 30–31 (1999).

    Article  CAS  Google Scholar 

  2. Stordal, F. et al. Is there a trend in cirrus cloud cover due to aircraft traffic? Atmos. Chem. Phys. 5, 2155–2162 (2005).

    Article  CAS  Google Scholar 

  3. Lee, D. S. et al. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009).

    Article  CAS  Google Scholar 

  4. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  5. Schumann, U. & Wendling, P. in Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects (ed. Schumann, U.) 138–153 (Lecture Notes in Engineering, Springer, 1990).

    Google Scholar 

  6. Minnis, P. et al. Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett. 25, 1157–1160 (1998).

    Article  Google Scholar 

  7. Haywood, J. M. et al. A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. J. Geophys. Res. 114, D24201 (2009).

    Article  Google Scholar 

  8. Kärcher, B., Möhler, O., DeMott, P. J., Pechtl, S. & Yu, F. Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys. 7, 4203–4227 (2007).

    Article  Google Scholar 

  9. Hendricks, J., Kärcher, B., Lohmann, U. & Ponater, M. Do aircraft black carbon emissions affect cirrus clouds on the global scale? Geophys. Res. Lett. 32, L12814 (2005).

    Article  Google Scholar 

  10. Liu, X., Penner, J. E. & Wang, M. Influence of anthropogenic sulphate and black carbon on upper tropospheric clouds in the NCAR CAM3 coupled to the IMPACT global aerosol model. J. Geophys. Res. 114, D03204 (2009).

    Article  Google Scholar 

  11. Minnis, P. in Encyclopedia of Atmospheric Sciences (eds Holton, J., Pyle, J. & Curry, J.) 509–520 (Academic, 2003).

    Book  Google Scholar 

  12. Meerkötter, R. et al. Radiative forcing by contrails. Ann. Geophys. 17, 1080–1094 (1999).

    Article  Google Scholar 

  13. Appleman, H. The formation of exhaust contrails by jet aircraft. Bull. Am. Meteorol. Soc. 34, 14–20 (1953).

    Article  Google Scholar 

  14. Schumann, U. Influence of propulsion efficiency on contrail formation. Aerosp. Sci. Technol. 4, 391–401 (2000).

    Article  Google Scholar 

  15. Koop, T., Luo, B. P., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000).

    Article  CAS  Google Scholar 

  16. Sausen, R., Gierens, K., Ponater, M. & Schumann, U. A diagnostic study of the global distribution of contrails. Theor. Appl. Clim. 61, 127–141 (1998).

    Article  Google Scholar 

  17. Burkhardt, U., Kärcher, B., Ponater, M., Gierens, K. & Gettelman, A. Contrail cirrus supporting areas. Geophys. Res. Lett. 35, L16808 (2008).

    Article  Google Scholar 

  18. Seinfeld, J. H. Clouds, contrails and climate. Nature 391, 837–838 (1998).

    Article  CAS  Google Scholar 

  19. Bakan, S., Betancor, M., Gayler, V. & Graßl, H. Contrail frequency over Europe from NOAA satellite images. Ann. Geophys. 12, 962–968 (1994).

    Article  Google Scholar 

  20. Meyer, R., Mannstein, H., Meerkötter, R., Schumann, U. & Wendling, P. Regional radiative forcing by line-shaped contrails derived from satellite data. J. Geophys. Res. 107, 4104 (2002).

    Article  Google Scholar 

  21. Palikonda, R., Minnis, P., Duda, D. P. & Mannstein, H. Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas. Meteorol. Z. 14, 525–536 (2005).

    Article  Google Scholar 

  22. Marquart, S., Ponater, M., Mager, F. & Sausen, R. Future development of contrail cover, optical depth, and radiative forcing: Impacts of increasing air traffic and climate change. J. Clim. 16, 2890–2904 (2003).

    Article  Google Scholar 

  23. Ponater, M., Marquart, S. & Sausen, R. Contrails in a comprehensive global climate model: Parameterization and radiative forcing results. J. Geophys. Res. 107, 4164 (2002).

    Article  Google Scholar 

  24. Burkhardt, U., Kärcher, B. & Schumann, U. Global modelling of the contrail and contrail cirrus climate impact. Bull. Am. Meteorol. Soc. 91, 479–483 (2010).

    Article  Google Scholar 

  25. Burkhardt, U. & Kärcher, B. Process-based simulation of contrail cirrus in a global climate model. J. Geophys. Res. 114, D16201 (2009).

    Article  Google Scholar 

  26. Roeckner, E. et al. Max-Planck-Inst. Meteorol. Rep. 218, 90 (Hamburg, 1996).

    Google Scholar 

  27. Sassen, K. & Cho, B. S. Subvisual–thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteorol. 31, 1275–1285 (1992).

    Article  Google Scholar 

  28. Kärcher, B., Burkhardt, U., Unterstrasser, S. & Minnis, P. Factors controlling contrail cirrus optical depth. Atmos. Chem. Phys. 9, 6229–6254 (2009).

    Article  Google Scholar 

  29. McFarquhar, G. M., Heymsfield, A. J., Spinhirne, J. & Hart, B. Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci. 57, 1841–1853 (2000).

    Article  Google Scholar 

  30. Marquart, S. & Mayer, B. Towards a reliable GCM estimation of contrail radiative forcing. Geophys. Res. Lett. 29, 1179 (2002).

    Article  Google Scholar 

  31. Stuber, N. & Forster, P. The impact of diurnal variations of air traffic on contrail radiative forcing. Atmos. Chem. Phys. 7, 3153–3162 (2007).

    Article  CAS  Google Scholar 

  32. Stuber, N., Forster, P., Rädel, G. & Shine, K. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing. Nature 441, 864–867 (2006).

    Article  CAS  Google Scholar 

  33. Fuglestvedt, J. S. et al. Transport impacts on atmosphere and climate: Metrics. Atmos. Environ. 44, 4648–4677 (2010).

    Article  CAS  Google Scholar 

  34. Kärcher, B., Burkhardt, U., Ponater, M. & Frömming, C. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing. Proc. Natl Acad. Sci. USA 107, 19181–19184 (2010).

    Article  Google Scholar 

  35. Frömming, C. et al. Sensitivity of contrail coverage and contrail radiative forcing to selected key parameters. Atmos. Environ. 45, 1483–1490 (2011).

    Article  Google Scholar 

  36. Myhre, G. et al. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteorol. Z. 18, 585–596 (2009).

    Article  Google Scholar 

  37. Boer, G. et al. Some results from an intercomparison of the climate simulated by 14 general circulation models. J. Geophys. Res. 97, 12771–12786 (1992).

    Article  Google Scholar 

  38. Heymsfield, A. et al. Contrail microphysics. Bull. Am. Meteorol. Soc. 91, 465–472 (2010).

    Article  Google Scholar 

  39. Zhang, M. H. et al. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res. 110, D15S02 (2005).

    Google Scholar 

  40. Waliser, D. E. et al. Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res. 114, D00A21 (2009).

    Article  Google Scholar 

  41. Freudenthaler, V., Homburg, F. & Jäger, H. Contrail observations by ground-based scanning Lidar: Cross-sectional growth. Geophys. Res. Lett. 22, 3501–3504 (1995).

    Article  Google Scholar 

  42. Stuber, N., Sausen, R. & Ponater, M. Stratosphere adjusted radiative forcing calculations in a comprehensive climate model. Theor. Appl. Climatol. 68, 125–135 (2001).

    Article  Google Scholar 

  43. Eyers, C. J. et al. AERO2K Global Aviation Emissions Inventories for 2002 and 2025: Technical Report QINETIC/04/01113 (QinetiQ, 2004).

Download references

Acknowledgements

We thank M. Ponater for providing us with a code for calculating stratosphere-adjusted radiative forcing and for comments and U. Schumann for the diurnal cycle of air traffic. This work was carried out within the DLR project ‘Climate compatible air transport system’.

Author information

Authors and Affiliations

Authors

Contributions

The concepts of the parametrization were jointly developed and discussed by U.B. and B.K. U.B. carried out the research and wrote the paper.

Corresponding author

Correspondence to Ulrike Burkhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhardt, U., Kärcher, B. Global radiative forcing from contrail cirrus. Nature Clim Change 1, 54–58 (2011). https://doi.org/10.1038/nclimate1068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing