Climate, health, agricultural and economic impacts of tighter vehicle-emission standards

Abstract

Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition–climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000–280,000 avoided premature air pollution-related deaths, 6.1–19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6–2.4 trillion avoided health damage and $US1.1–4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/−0.17) °C of Northern Hemisphere extratropical warming during 2040–2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Impacts of worldwide vehicle emissions in 2030 compared with 2000.
Figure 2: Net and per-component global mean radiative forcing (mW m−2) by region and fuel type.
Figure 3: Climate response to non-CO2 vehicle emissions.

References

  1. 1

    Streets, D. G. et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108, 8809 (2003).

    Article  Google Scholar 

  2. 2

    Marland, G., Boden, T. A. & Andres, R. J. in Global, Regional, and National Fossil Fuel CO2 Emissions (Trends: A Compendium of Data on Global Change, US Department of Energy, 2008).

    Google Scholar 

  3. 3

    Uherek, E. et al. Transport impacts on atmosphere and climate: Land transport. Atmos. Environ. 44, 4772–4816 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Balkanski, Y. et al. Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation. Atmos. Chem. Phys. 10, 4477–4489 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Unger, N., Shindell, D. T. & Wang, J. S. Climate forcing by the on-road transportation and power generation sectors. Atmos. Environ. 43, 3077–3085 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K. & Skeie, R. B. Climate forcing from the transport sectors. Proc. Natl Acad. Sci. USA 105, 454–458 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Fuglestvedt, J. S. et al. Transport impacts on atmosphere and climate: Metrics. Atmos. Environ. 44, 4648–4677 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Shindell, D. et al. Climate forcing and air quality change due to regional emissions reductions by economic sector. Atmos. Chem. Phys. 8, 7101–7113 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Fulton, L. & Eads, G. IEA/SMP Model Documentation and Reference Case Projections 1–92 (International Energy Agency World Business Council for Sustainable Development, 2004).

    Google Scholar 

  10. 10

    Boucher, O., Friedlingstein, P., Collins, B. & Shine, K. P. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett. 4, 044007 (2009).

    Article  Google Scholar 

  11. 11

    Shindell, D. & Faluvegi, G. The net climate impact of coal-fired power plant emissions. Atmos. Chem. Phys. 10, 3247–3260 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Shindell, D. et al. Spatial scales of climate response to inhomogeneous radiative forcing. J. Geophys. Res. 115, D19110 (2010).

    Article  Google Scholar 

  13. 13

    Raes, F. & Seinfeld, J. H. New directions: Climate change and air pollution abatement: A bumpy road. Atmos. Environ. 43, 5132–5133 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, D11202 (2007).

    Article  Google Scholar 

  15. 15

    Koch, D. et al. Distinguishing aerosol impacts on climate over the past century. J. Clim. 22, 2659–2677 (2009).

    Article  Google Scholar 

  16. 16

    Wang, C., Kim, D., Ekman, A. M. L., Barth, M. C. & Rasch, P. J. Impact of anthropogenic aerosols on Indian summer monsoon. Geophys. Res. Lett. 36, L21704 (2009).

    Article  Google Scholar 

  17. 17

    Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nature Geosci. 1, 221–227 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Meehl, G., A., Arblaster, J. M. & Collins, W. D. Effects of black carbon aerosols on the Indian monsoon. J. Clim. 21, 2869–2882 (2006).

    Article  Google Scholar 

  19. 19

    Ming, Y. & Ramaswamy, V. Nonlinear climate and hydrological responses to aerosol effects. J. Clim. 22, 1329–1339 (2009).

    Article  Google Scholar 

  20. 20

    Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Clim. 15, 2103–2116 (2002).

    Article  Google Scholar 

  21. 21

    Chung, S. H. & Seinfeld, J. Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. 110, D11102 (2005).

    Article  Google Scholar 

  22. 22

    Smith, K. R. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet 374, 2091–2103 (2009).

    Article  Google Scholar 

  23. 23

    Haines, A. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Overview and implications for policy makers. Lancet 374, 2104–2114 (2009).

    Article  Google Scholar 

  24. 24

    Shindell, D. T. et al. Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos. Chem. Phys. 6, 4427–4459 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Schwarz, J. P. et al. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J. Geophys. Res. 113, D03203 (2008).

    Article  Google Scholar 

  26. 26

    Lamarque, J. F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Penner, J. E. et al. Model intercomparison of indirect aerosol effects. Atmos. Chem. Phys. 6, 3391–3405 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Forster, P. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  29. 29

    Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the 20th century. Nature Geosci. 2, 294–300 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Hegerl, G. C. et al. in IPCC Fourth Assessment Report (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  31. 31

    Krewski, D. et al. Extended Follow-up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality 140 (Health Effects Institute, 2009).

    Google Scholar 

  32. 32

    Jerrett, M. et al. Long-term ozone exposure and mortality. New Engl. J. Med. 360, 1085–1095 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Anenberg, S. C., Horowitz, L. W., Tong, D. Q. & West, J. J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modelling. Environ. Health Perspect. 118, 1189–1195 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Cohen, A. J. et al. Comparative Quantification of Health Risks (World Health Organization, 2004).

    Google Scholar 

  35. 35

    Van Dingenen, R. et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43, 604–618 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Cropper, M. L. & Oates, W. E. Environmental economics: A survey. J. Econ. Lit. 30, 675–740 (1992).

    Google Scholar 

  37. 37

    Viscusi, W. K. & Aldy, J. E. The value of a statistical life: A critical review of market estimates throughout the world. J. Risk Uncert. 27, 5–76 (2003).

    Article  Google Scholar 

  38. 38

    USEPA The Benefits and Costs of the Clean Air Act: 1990–2010. EPA Report to Congress (Office of Air and Radiation, Office of Policy, 1999).

  39. 39

    http://databank.worldbank.org/ddp.

  40. 40

    Muller, N. Z. & Mendelsohn, R. Measuring the damages of air pollution in the United States. J. Environ. Econ. Manag. 54, 1–14 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the NASA Applied Sciences program, the ClimateWorks Foundation and the California Air Resources Board for supporting this work. We also thank T. Bond for gridding the emissions, M. Brauer for providing the PM2.5-measurement database, J. West for assistance with the population projection, B. Croes and D. Luo at CARB for their assistance and the UNEP/WMO Integrated Assessment of Black Carbon and Tropospheric Ozone team for discussions. Conclusions expressed in this article are the authors and do not necessarily represent those of their employers.

Author information

Affiliations

Authors

Contributions

D.S. planned and led the work and writing of the paper. G.F. carried out the composition–climate modelling. M.W. carried out the emissions analyses. S.C.A. and J.A. carried out the health analyses. R.V.D. carried out the crop-yield and valuation analysis. N.Z.M. carried out the health valuation analysis. D.K. provided input on aerosol modelling. G.M. analysed the composition–climate model output. All contributed to writing the paper.

Corresponding author

Correspondence to Drew Shindell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1525 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shindell, D., Faluvegi, G., Walsh, M. et al. Climate, health, agricultural and economic impacts of tighter vehicle-emission standards. Nature Clim Change 1, 59–66 (2011). https://doi.org/10.1038/nclimate1066

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing