Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids

Abstract

Synthetic molecules that recognize specific sequences within cellular DNA are potentially powerful tools for investigating chromosome structure and function. Here, we designed antigene peptide nucleic acids (agPNAs) to target the transcriptional start sites for the human progesterone receptor B (hPR-B) and A (hPR-A) isoforms at sequences predicted to be single-stranded within the open complex of chromosomal DNA. We found that the agPNAs were potent inhibitors of transcription, showing for the first time that synthetic molecules can recognize transcription start sites inside cells. Breast cancer cells treated with agPNAs showed marked changes in morphology and an unexpected relationship between the strictly regulated levels of hPR-B and hPR-A. We confirmed these phenotypes using siRNAs and antisense PNAs, demonstrating the power of combining antigene and antisense strategies for gene silencing. agPNAs provide a general approach for controlling transcription initiation and a distinct option for target validation and therapeutic development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic showing the effect of agPNAs on transcription.
Figure 2: Effect of agPNAs on expression of hPR.
Figure 3: Dose-response profiles for inhibition of hPR expression.
Figure 4: Graphical analysis of the linkage between levels of hPR-B and hPR-A in transfected T47D cells.
Figure 5: Effect of inhibiting hPR expression on cell morphology and ezrin expression.

References

  1. 1

    Kaihatsu, K., Janowski, B.A. & Corey, D.R. Recognition of chromosomal DNA by PNAs. Chem. Biol. 11, 749–758 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Nielsen, P.E., Egholm, M., Berg, R.H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine substituted polyamide. Science 254, 1497–1500 (1991).

    CAS  Article  Google Scholar 

  3. 3

    Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Demidov, V.V., Broude, N.E., Lavrentieva-Smolina, I.V., Kuhn, H. & Frank-Kamenetskii, M.D. An artificial primosome: design, function, and applications. ChemBioChem 2, 133–139 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Larsen, H.J. & Nielsen, P.E. Transcription induced binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. Nucleic Acids Res. 24, 458–463 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Mollegaard, N.E., Buchardt, O., Egholm, M. & Nielsen, P.E. Peptide nucleic acid-DNA strand displacement loops as artificial gene promoters. Proc. Natl. Acad. Sci. USA 91, 3892–3895 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Faruqi, A.F., Egholm, M. & Glazer, P.M. Peptide nucleic acid-targeted mutagenesis of chromosomal DNA. Proc. Natl. Acad. Sci. USA 95, 1398–1403 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Bentin, T. & Nielsen, P.E. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA breathing dynamics. Biochemistry 35, 8863–8869 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Zhang, X., Ishihara, T. & Corey, D.R. Strand invasion by PNAs and PNA-peptide chimera. Nucleic Acids Res. 28, 3332–3338 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Holstege, F.C., Fiedler, U. & Timmers, H.T. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16, 7468–7480 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Kahl, B.F., Li, H. & Paule, M.R. DNA melting and promoter clearance by eukaryotic RNA polymerase I. J. Mol. Biol. 299, 75–89 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Kastner, P. et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor isoforms A and B. EMBO J. 9, 1603–1614 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Misrahi, M. et al. Structure of the human progesterone receptor gene. Biochim. Biophys. Acta 1216, 289–292 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Conneely, O.M., Jericevic, B.M. & Lydon, J.P. Progesterone receptors in mammary gland development and tumorigenesis. J. Mammary Gland Biol. Neoplasia 8, 205–214 (2003).

    Article  Google Scholar 

  15. 15

    Kaihatsu, K., Huffman, K.E. & Corey, D.R. Intracellular uptake and inhibition of gene expression by PNAs and PNA-peptide conjugates. Biochemistry 43, 14340–14347 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Herbert, B. et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96, 14726–14781 (1999).

    Article  Google Scholar 

  17. 17

    Doyle, D.F., Braasch, D.A., Simmons, C.G., Janowski, B.A. & Corey, D.R. Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry 40, 53–64 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Liu, Y., Braasch, D.A., Nulf, C.J. & Corey, D.R. Isoform-specific inhibition of cellular gene expression by peptide nucleic acid. Biochemistry 43, 1921–1927 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Nulf, C.J. & Corey, D. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res. 32, 3792–3798 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Nardulli, A.M., Greene, G.L., O'Malley, B.W. & Katzenellenbogen, B.S. Regulation of progesterone receptor messenger ribonucleic acid and protein levels in MCF-7 cells by estradiol: analysis of estrogen's effect on progesterone receptor synthesis and degradation. Endocrinology 122, 935–944 (1988).

    CAS  Article  Google Scholar 

  21. 21

    Vienonen, A., Syvala, H., Miettinen, S., Tuohimaa, P. & Ylikomi, T. Expression of progesterone receptor isoforms A and B is differentially regulated by estrogen in different breast cancer cell lines. J. Steroid Biochem. Mol. Biol. 80, 307–313 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Stein, C. Keeping the biotechnology of antisense in context. Nat. Biotechnol. 17, 209 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Jackson, A.L. & Linsley, P.S. Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 20, 521–524 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Karmakar, S. & Das, C. Modulation of ezrin and E-cadherin expression by IL-1β and TGF-β1 in human trophoblasts. J. Reprod. Immunol. 64, 9–29 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Hunter, K.W. Ezrin, a key component in tumor metastasis. Trends Mol. Med. 10, 201–204 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Song, J. et al. Estradiol-induced ezrin overexpression in ovarian cancer: a new signaling domain for estrogen. Cancer Lett. 220, 57–65 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Condon, J.C. et al. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc. Natl. Acad. Sci. USA 100, 9518–9523 (2003).

    CAS  Article  Google Scholar 

  28. 28

    McGowan, E.M. et al. Cytoskeletal responsiveness to progestins is dependent on progesterone receptor A levels. J. Mol. Endocrinol. 31, 241–253 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Milne, L., Xu, Y., Perrin, D.M. & Sigman, D.S. An approach to gene-specific transcription inhibition using oligonucleotides complementary to the template strand of the open complex. Proc. Natl. Acad. Sci. USA 97, 3136–3141 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Knauert, M.P. & Glazer, P.M. Triplex forming oligonucleotides:sequence-specific tools for gene targeting. Hum. Mol. Genet. 10, 2243–2251 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Besch, R., Giovannangeli, C., Schuh, T., Kammerbauer, C. & Degitz, K. Characterization and quantification of triple helix formation in chromosomal DNA. J. Mol. Biol. 341, 979–989 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Dervan, P.B. & Edelson, B.S. Recognition of the DNA minor groove by pyrrole-imidizole polyamides. Curr. Opin. Struct. Biol. 13, 284–299 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Dudouet, B. et al. Accessibility of nuclear chromatin by DNA binding polyamides. Chem. Biol. 10, 859–867 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Janowski, B.A. et al. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat. Chem. Biol. (in the press) (2005).

  35. 35

    Mattick, J.S. & Makunin, I.V. Small regulatory RNAs in mammals. Hum. Mol. Genet. 14, R121–R132 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIGMS 60642 and 73042 to D.R.C. and P01 HD011149 to C.R.M.) and the Robert A. Welch Foundation (I-1244).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David R Corey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of estradiol treatment on the ability of agPNAs to inhibit hPR gene expression. (PDF 282 kb)

Supplementary Methods (PDF 79 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janowski, B., Kaihatsu, K., Huffman, K. et al. Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids. Nat Chem Biol 1, 210–215 (2005). https://doi.org/10.1038/nchembio724

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing