Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assignment of protein function in the postgenomic era

A Corrigendum to this article was published on 01 September 2005

Abstract

Genome sequencing projects have provided researchers with an unprecedented boon of molecular information that promises to revolutionize our understanding of life and lead to new treatments of its disorders. However, genome sequences alone offer only limited insights into the biochemical pathways that determine cell and tissue function. These complex metabolic and signaling networks are largely mediated by proteins. The vast number of uncharacterized proteins found in prokaryotic and eukaroyotic systems suggests that our knowledge of cellular biochemistry is far from complete. Here, we highlight a new breed of 'postgenomic' methods that aim to assign functions to proteins through the integrated application of chemical and biological techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Genomic enzymology.
Figure 4: Activity-based protein profiling (ABPP).
Figure 5: Chemical genetic analysis of kinases.
Figure 6: Comparison of targeted and untargeted LC-MS methods for comparative metabolite analysis.

Similar content being viewed by others

References

  1. Gerlt, J.A. & Babbitt, P.C. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu. Rev. Biochem. 70, 209–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Walsh, C.T. Posttranslational Modification of Proteins. Expanding Nature's Inventory (Roberts & Company, Greenwood Village, Colorado, USA, 2005).

    Google Scholar 

  3. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carpenter, A.E. & Sabatini, D.M. Systematic genome-wide screens of gene function. Nat. Rev. Genet. 5, 11–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gerlt, J.A. & Raushel, F.M. Evolution of function in (β/α)8-barrel enzymes. Curr. Opin. Chem. Biol. 7, 252–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Neidhart, D.J., Kenyon, G.L., Gerlt, J.A. & Petsko, G.A. Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature 347, 692–694 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Osterman, A. & Overbeek, R. Missing genes in metabolic pathways: a comparative genomics approach. Curr. Opin. Chem. Biol. 7, 238–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt, D.M., Hubbard, B.K. & Gerlt, J.A. Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases. Biochemistry 40, 15707–15715 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wise, E., Yew, W.S., Babbitt, P.C., Gerlt, J.A. & Rayment, I. Homologous (β/α)8-barrel enzymes that catalyze unrelated reactions: orotidine 5′-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41, 3861–3869 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, S.C., Person, M.D., Johnson, W.H., Jr & Whitman, C.P. Reactions of trans-3-chloroacrylic acid dehalogenase with acetylene substrates: consequences of and evidence for a hydration reaction. Biochemistry 42, 8762–8773 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. de Jong, R.M., Brugman, W., Poelarends, G.J., Whitman, C.P. & Dijkstra, B.W. The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily. J. Biol. Chem. 279, 11546–11552 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mizanur, R.M., Jaipuri, F.A. & Pohl, N.L. One-step synthesis of labeled sugar nucleotides for protein O-GlcNAc modification studies by chemical function analysis of an archaeal protein. J. Am. Chem. Soc. 127, 836–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kurnasov, O. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem. Biol. 10, 1195–1204 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Zhuang, Z., Gartemann, K.H., Eichenlaub, R. & Dunaway-Mariano, D. Characterization of the 4-hydroxybenzoyl-coenzyme A thioesterase from Arthrobacter sp. strain SU. Appl. Environ. Microbiol. 69, 2707–2711 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patterson, S.D. & Aebersold, R. Proteomics: the first decade and beyond. Nat. Genet. 33, 311–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. de Hoog, C.L. & Mann, M. Proteomics. Annu. Rev. Genomics Hum. Genet. 5, 267–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expressioin: a challenge for proteomic research. Electrophoresis 21, 1104–1115 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics 1, 781–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Verhelst, S.H. & Bogyo, M. Chemical proteomics applied to target identification and drug discovery. Biotechniques 38, 175–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kobe, B. & Kemp, B.E. Active site-directed protein regulation. Nature 402, 373–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jessani, N. & Cravatt, B.F. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol. 8, 54–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Berger, A.B., Vitorino, P.M. & Bogyo, M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4, 371–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B.F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer invasiveness. Proc. Natl. Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sieber, S.A., Mondala, T.S., Head, S.R. & Cravatt, B.F. Microarray platform for profiling enzyme activities in complex proteomes. J. Am. Chem. Soc. 126, 15640–15641 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Adam, G.C., Burbaum, J.J., Kozarich, J.W., Patricelli, M.P. & Cravatt, B.F. Mapping enzyme active sites in complex proteomes. J. Am. Chem. Soc. 126, 1363–1368 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Okerberg, E.S. et al. High-resolution functional proteomics by active-site peptide profiling. Proc. Natl. Acad. Sci. USA 102, 4996–5001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. USA 101, 13756–13761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joyce, J.A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Greenbaum, D.C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Barglow, K.T. & Cravatt, B.F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Greenbaum, D., Medzihradszky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Thornberry, N.A. et al. Inactivation of interleukin-1 β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33, 3934–3940 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Faleiro, L., Kobayashi, R., Fearnhead, H. & Lazebnik, Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16, 2271–2281 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kato, D. et al. Activity-based probes that targe diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan, E.W., Chattopadhaya, S., Panicker, R.C., Huang, X. & Yao, S.Q. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y.M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Groll, M., Nazif, T., Huber, R. & Bogyo, M. Probing structural determinants distal to the site of hydrolysis that control substrate specificity of the 20S proteasome. Chem. Biol. 9, 655–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Ovaa, H. et al. Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew. Chem. Int. Edn Engl. 42, 3626–3629 (2003).

    Article  CAS  Google Scholar 

  47. Kumar, S. et al. Activity-based probes for protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 101, 7943–7948 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shreder, K.R. et al. Design and synthesis of AX7574: a microcystin-derived, fluorescent probe for serine/threonine phosphatases. Bioconjug. Chem. 15, 790–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y. et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem. Biol. 12, 99–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Vocadlo, D.J. & Bertozzi, C.R. A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew. Chem. Int. Edn Engl. 43, 5338–5342 (2004).

    Article  CAS  Google Scholar 

  51. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20, 805–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Adam, G.C., Cravatt, B.F. & Sorensen, E.J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol. 8, 81–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes. Mol. Cell. Proteomics 1, 828–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem 5, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Jessani, N. et al. Class assignment of sequence-unrelated members of enzyme superfamilies by activity-based protein profiling. Angew. Chem. Int. Edn Engl. 44, 2400–2403 (2005).

    Article  CAS  Google Scholar 

  56. Baxter, S.M. et al. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol. Cell. Proteomics 3, 209–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Leung, D., Hardouin, C., Boger, D.L. & Cravatt, B.F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Greenbaum, D.C. et al. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol. 9, 1085–1094 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Speers, A.E. & Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, S.A. & Hunter, T. Kinomics: methods for deciphering the kinome. Nat. Methods 2, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Rusnak, F., Zhou, J. & Hathaway, G.M. Identification of phosphorylated and glycosylated sites in peptides by chemically targeted proteolysis. J. Biomol. Tech. 13, 228–237 (2002).

    PubMed  PubMed Central  Google Scholar 

  65. Knight, Z.A. et al. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat. Biotechnol. 21, 1047–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Zachara, N.E. & Hart, G.W. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673, 13–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, X., Zhang, F. & Kudlow, J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hang, H.C., Yu, C., Kato, D.L. & Bertozzi, C.R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc. Natl. Acad. Sci. USA 100, 14846–14851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rose, M.W. et al. Enzymatic incorporation of orthogonally reactive prenylazide groups into peptides using geranylazide diphosphate via protein farnesyltransferase: implications for selective protein labeling. Biopolymers 80, 164–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Khidekel, N. et al. A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125, 16162–16163 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132–13137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, H., Li, X.J., Martin, D.B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Shah, K., Liu, Y., Deirmengian, C. & Shokat, K.M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. USA 94, 3565–3570 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Sekiya-Kawasaki, M. et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J. Cell Biol. 162, 765–772 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, H. et al. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc. Natl. Acad. Sci. USA 100, 4287–4292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wong, S. et al. Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. Proc. Natl. Acad. Sci. USA 101, 17456–17461 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ubersax, J.A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Holt, J.R. et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Weijland, A. & Parmeggiani, A. Toward a model for the interaction between elongation factor Tu and the ribosome. Science 259, 1311–1314 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Levitsky, K., Ciolli, C.J. & Belshaw, P.J. Selective inhibition of engineered receptors via proximity-accelerated alkylation. Org. Lett. 5, 693–696 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Hoffman, H.E., Blair, E.R., Johndrow, J.E. & Bishop, A.C. Allele-specific inhibitors of protein tyrosine phosphatases. J. Am. Chem. Soc. 127, 2824–2825 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, C. et al. A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nat. Methods 2, 435–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Lu, W., Gong, D., Bar-Sagi, D. & Cole, P.A. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lu, W., Shen, K. & Cole, P.A. Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry 42, 5461–5468 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Ottesen, J.J., Huse, M., Sekedat, M.D. & Muir, T.W. Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated T β RI kinase. Biochemistry 43, 5698–5706 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Zou, K., Cheley, S., Givens, R.S. & Bayley, H. Catalytic subunit of protein kinase A caged at the activating phosphothreonine. J. Am. Chem. Soc. 124, 8220–8229 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Rothman, D.M., Vazquez, M.E., Vogel, E.M. & Imperiali, B. General method for the synthesis of caged phosphopeptides: tools for the exploration of signal transduction pathways. Org. Lett. 4, 2865–2868 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Vazquez, M.E., Nitz, M., Stehn, J., Yaffe, M.B. & Imperiali, B. Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations. J. Am. Chem. Soc. 125, 10150–10151 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Rothman, D.M. et al. Caged phosphoproteins. J. Am. Chem. Soc. 127, 846–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hahn, M.E. & Muir, T.W. Photocontrol of Smad2, a multiphosphorylated cell-signaling protein, through caging of activating phosphoserines. Angew. Chem. Int. Edn Engl. 43, 5800–5803 (2004).

    Article  CAS  Google Scholar 

  100. Nguyen, A., Rothman, D.M., Stehn, J., Imperiali, B. & Yaffe, M.B. Caged phosphopeptides reveal a temporal role for 14–3-3 in G1 arrest and S-phase checkpoint function. Nat. Biotechnol. 22, 993–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli . Science 292, 498–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Giriat, I. & Muir, T.W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 125, 7180–7181 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Rohde, A. et al. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16, 2749–2771 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, J.Y. et al. ENU mutagenesis identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human maple syrup urine disease. J. Clin. Invest. 113, 434–440 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Cravatt, B.F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hirai, M.Y. et al. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem., published online May 2005 (10.1074/jbc.M502332200).

  111. Babbitt, P.C. Definitions of enzyme function for the structural genomics era. Curr. Opin. Chem. Biol. 7, 230–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Pegg, S.C. & Babbitt, P.C. Shotgun: getting more from sequence similarity searches. Bioinformatics 15, 729–740 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Copley, S.D., Novak, W.R. & Babbitt, P.C. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43, 13981–13995 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to many wonderful colleagues whose work we were unable to cite because of space limitations. We gratefully acknowledge the support of the US National Institutes of Health (CA087660, DA017259, DA015197), the Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, and the Skaggs Institute for Chemical Biology. A.S. is a Merck Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghatelian, A., Cravatt, B. Assignment of protein function in the postgenomic era. Nat Chem Biol 1, 130–142 (2005). https://doi.org/10.1038/nchembio0805-130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0805-130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing