Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis

Abstract

Inorganic nitrite (NO2) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO3) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase–deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nitrate reductase activity in rat liver homogenates.
Figure 2: Mammalian nitrate reductase activity.
Figure 3: Nitrate reductase activity is present in vivo.
Figure 4: Xanthine oxidoreductase–dependent consumption of nitrite and production of NO.
Figure 5: Nitrate affects blood pressure and post-ischemic blood flow.

Similar content being viewed by others

References

  1. Forstermann, U. & Munzel, T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714 (2006).

    Article  Google Scholar 

  2. Ignarro, L.J. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol. 53, 503–514 (2002).

    CAS  PubMed  Google Scholar 

  3. Weitzberg, E. & Lundberg, J.O. Nonenzymatic nitric oxide production in humans. Nitric Oxide 2, 1–7 (1998).

    Article  CAS  Google Scholar 

  4. Lundberg, J.O., Weitzberg, E. & Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

    Article  CAS  Google Scholar 

  5. Gladwin, M.T. et al. The emerging biology of the nitrite anion. Nat. Chem. Biol. 1, 308–314 (2005).

    Article  CAS  Google Scholar 

  6. Zweier, J.L., Samouilov, A. & Kuppusamy, P. Non-enzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta 1411, 250–262 (1999).

    Article  CAS  Google Scholar 

  7. Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).

    Article  CAS  Google Scholar 

  8. Nagababu, E., Ramasamy, S., Abernethy, D.R. & Rifkind, J.M. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem. 278, 46349–46356 (2003).

    Article  CAS  Google Scholar 

  9. Zhang, Z. et al. Human xanthine oxidase converts nitrite ions into nitric oxide (NO). Biochem. Soc. Trans. 25, 524S (1997).

    Article  CAS  Google Scholar 

  10. Webb, A. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA 101, 13683–13688 (2004).

    Article  CAS  Google Scholar 

  11. Shiva, S. et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ. Res. 100, 654–661 (2007).

    Article  CAS  Google Scholar 

  12. Rassaf, T. et al. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 100, 1749–1754 (2007).

    Article  CAS  Google Scholar 

  13. Kozlov, A.V., Staniek, K. & Nohl, H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 454, 127–130 (1999).

    Article  CAS  Google Scholar 

  14. Carlsson, S., Wiklund, N.P., Engstrand, L., Weitzberg, E. & Lundberg, J.O. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide 5, 580–586 (2001).

    Article  CAS  Google Scholar 

  15. Gago, B., Lundberg, J.O., Barbosa, R.M. & Laranjinha, J. Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic. Biol. Med. 43, 1233–1242 (2007).

    Article  CAS  Google Scholar 

  16. Peri, L. et al. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group? Free Radic. Biol. Med. 39, 668–681 (2005).

    Article  CAS  Google Scholar 

  17. Lundberg, J.O., Weitzberg, E., Lundberg, J.M. & Alving, K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut 35, 1543–1546 (1994).

    Article  CAS  Google Scholar 

  18. Bryan, N.S. et al. Nitrite is signalling molecule and regulator of gene expression in mammalian tissue. Nat. Chem. Biol. 1, 290–297 (2005).

    Article  CAS  Google Scholar 

  19. Shiva, S. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Biol. 2, 486–493 (2006).

    Article  CAS  Google Scholar 

  20. Lundberg, J.O. & Weitzberg, E. NO generation from nitrite and its role in vascular control. Arterioscler. Thromb. Vasc. Biol. 25, 915–922 (2005).

    Article  CAS  Google Scholar 

  21. Lundberg, J.O., Weitzberg, E., Cole, J.A. & Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2, 593–602 (2004).

    Article  CAS  Google Scholar 

  22. Spiegelhalder, B., Eisenbrand, G. & Preussman, R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14, 545–548 (1976).

    Article  CAS  Google Scholar 

  23. Duncan, C. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1, 546–551 (1995); comment 1, 515–517 (1995).

    Article  CAS  Google Scholar 

  24. Lundberg, J.O. & Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 37, 395–400 (2004).

    Article  CAS  Google Scholar 

  25. Moreno-Vivian, C., Cabello, P., Martinez-Luque, M., Blasco, R. & Castillo, F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 181, 6573–6584 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moncada, S., Palmer, R.M.J. & Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–141 (1991).

    CAS  PubMed  Google Scholar 

  27. Ward, F.W., Coates, M.E. & Walker, R. Nitrate reduction, gastro-intestinal pH and N-nitrosation in gnotobiotic and conventional rats. Food Chem. Toxicol. 24, 17–22 (1986).

    Article  CAS  Google Scholar 

  28. Ward, F.W., Coates, M.E., Cole, C.B. & Fuller, R. Effect of dietary fats on endogenous formation of N-nitrosamines from nitrate in germ-free and conventional rats and rats harbouring a human flora. Food Addit. Contam. 7, 597–604 (1990).

    Article  CAS  Google Scholar 

  29. Fritsch, P., de Saint Blanquat, G. & Klein, D. Excretion of nitrates and nitrites in saliva and bile in the dog. Food Chem. Toxicol. 23, 655–659 (1985).

    Article  CAS  Google Scholar 

  30. Alikulov, Z.A., L'Vov, N.P. & Kretovich, V.L. Nitrate and nitrite reductase activity of milk xanthine oxidase. Biokhimiia 45, 1714–1718 (1980).

    CAS  PubMed  Google Scholar 

  31. Li, H., Samouilov, A., Liu, X. & Zweier, J.L. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues. Biochemistry 42, 1150–1159 (2003).

    Article  CAS  Google Scholar 

  32. Millar, T.M. et al. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 427, 225–228 (1998).

    Article  CAS  Google Scholar 

  33. Gustafsson, B.E. The physiological importance of the colonic microflora. Scand. J. Gastroenterol. Suppl. 77, 117–131 (1982).

    CAS  PubMed  Google Scholar 

  34. Sarnesto, A., Linder, N. & Raivio, K.O. Organ distribution and molecular forms of human xanthine dehydrogenase/xanthine oxidase protein. Lab. Invest. 74, 48–56 (1996).

    CAS  PubMed  Google Scholar 

  35. Lambers, A.C. et al., The oral bioavailability study of nitrate from vegetables in healthy volunteeers (report no. 2358020156) 1–47 (National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands, 2000).

  36. Dejam, A. et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation 116, 1821–1831 (2007).

    Article  CAS  Google Scholar 

  37. Larsen, F.J., Ekblom, B., Sahlin, K., Lundberg, J.O. & Weitzberg, E. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 355, 2792–2793 (2006).

    Article  CAS  Google Scholar 

  38. Larsen, F.J., Weitzberg, E., Lundberg, J.O. & Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. (Oxf.) 191, 59–66 (2007).

    Article  CAS  Google Scholar 

  39. Duranski, M.R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005).

    Article  CAS  Google Scholar 

  40. Jung, K.H. et al. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke 37, 2744–2750 (2006).

    Article  CAS  Google Scholar 

  41. Tripatara, P. et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J. Am. Soc. Nephrol. 18, 570–580 (2007).

    Article  CAS  Google Scholar 

  42. Bryan, N.S. et al. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 104, 19144–19149 (2007).

    Article  CAS  Google Scholar 

  43. Speijers, G.J.A. & van den Brandt, P.A. Nitrate and potential endogenous formation of N-nitroso compounds. WHO Food Additives Series: 50 <http://www.inchem.org/documents/jecfa/jecmono/v50je06.htm> (2006).

  44. Kelley, E.E. et al. Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. Free Radic. Biol. Med. 40, 952–959 (2006).

    Article  CAS  Google Scholar 

  45. Green, D.J., Maiorana, A., O'Driscoll, G. & Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. (Lond.) 561, 1–25 (2004).

    Article  CAS  Google Scholar 

  46. Jungersten, L., Ambring, A., Wall, B. & Wennmalm, A. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J. Appl. Physiol. 82, 760–764 (1997).

    Article  CAS  Google Scholar 

  47. Crawford, J.H. et al. Transduction of NO-bioactivity by the red blood cell in sepsis: novel mechanisms of vasodilation during acute inflammatory disease. Blood 104, 1375–1382 (2004).

    Article  CAS  Google Scholar 

  48. Webb, A.J. et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51, 784–790 (2008).

    Article  CAS  Google Scholar 

  49. Lundberg, J.O., Feelisch, M., Bjorne, H., Jansson, E.A. & Weitzberg, E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide 15, 359–362 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the European Union (Eicosanox, LSMH-CT-2004-005033), Vinnova (KIDaT, chronic inflammation), Torsten & Ragnar Söderbergs Foundation, the Swedish Research Council, the Swedish Heart & Lung Foundation and a regional agreement between Stockholm County Council and Karolinska Institutet for generous support. We thank I. Johansson (Department of Physiology and Pharmacology, Karolinska Institutet) for kindly providing us with the human liver samples and J. Sällström (Uppsala University) for the Nos3−/− mice.

Author information

Authors and Affiliations

Authors

Contributions

E.Å.J., L. Huang, R.M., M.G., C.N., A.O., M.S. and J.P. performed experiments. All authors participated in the design and analysis of various experiments. J.O.L., E.Å.J. and E.W. wrote the paper.

Corresponding author

Correspondence to Jon O Lundberg.

Ethics declarations

Competing interests

J.O.L. and E.W. are named inventors on a patent application for the therapeutic use of inorganic nitrate and nitrite salts.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Methods (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, E., Huang, L., Malkey, R. et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 4, 411–417 (2008). https://doi.org/10.1038/nchembio.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.92

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing