Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and biochemical evidence for a boat-like transition state in β-mannosidases

Abstract

Enzyme inhibition through mimicry of the transition state is a major area for the design of new therapeutic agents. Emerging evidence suggests that many retaining glycosidases that are active on α- or β-mannosides harness unusual B2,5 (boat) transition states. Here we present the analysis of 25 putative β-mannosidase inhibitors, whose Ki values range from nanomolar to millimolar, on the Bacteroides thetaiotaomicron β-mannosidase BtMan2A. B2,5 or closely related conformations were observed for all tightly binding compounds. Subsequent linear free energy relationships that correlate log Ki with log Km/kcat for a series of active center variants highlight aryl-substituted mannoimidazoles as powerful transition state mimics in which the binding energy of the aryl group enhances both binding and the degree of transition state mimicry. Support for a B2,5 transition state during enzymatic β-mannosidase hydrolysis should also facilitate the design and exploitation of transition state mimics for the inhibition of retaining α-mannosidases—an area that is emerging for anticancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conformational agenda of glycosidases.
Figure 2: Putative mannosidase inhibitors used in this study.
Figure 3: Active center of wild-type BtMan2A, in complex with substituted mannoimidazole 1c.
Figure 4: Observed electron density for compounds 1a, 1c, 2a, 2c, 4a, 5 and 6 bound to BtMan2A in “side-on” and “end-on” views.
Figure 5: Linear free energy relationships.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Davies, G.J., Ducros, V.M.-A., Varrot, A. & Zechel, D.L. Mapping the conformational itinerary of β-glycosidases by X-ray crystallography. Biochem. Soc. Trans. 31, 523–527 (2003).

    Article  CAS  Google Scholar 

  2. Davies, G., Sinnott, M.L. & Withers, S.G. in Comprehensive Biological Catalysis Vol. 1 (ed. Sinnott, M.L.) 119–209 (Academic Press, London, 1997).

    Google Scholar 

  3. Vasella, A., Davies, G. & Böhm, M. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 6, 619–629 (2002).

    Article  CAS  Google Scholar 

  4. Crich, D. & Li, L.F. 4,6-O-benzylidene-directed beta-mannopyranosylation and alpha-glucopyranosylation: the 2-deoxy-2-fluoro and 3-deoxy-3-fluoro series of donors and the importance of the O2–C2-C3–O3 interaction. J. Org. Chem. 72, 1681–1690 (2007).

    Article  CAS  Google Scholar 

  5. Crich, D. & Chandrasekera, N.S. Mechanism of 4,6–0-benzylidene-directed beta-mannosylation as determined by alpha-deuterium kinetic isotope effects. Angew. Chem. Int. Ed. 43, 5386–5389 (2004).

    Article  CAS  Google Scholar 

  6. Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6, 306–312 (2000).

    Article  CAS  Google Scholar 

  7. Li, B. et al. Inhibition of Golgi mannosidase II with mannostatin A analogues: synthesis, biological evaluation, and structure-activity relationship studies. ChemBioChem 5, 1220–1227 (2004).

    Article  CAS  Google Scholar 

  8. Shah, N., Kuntz, D.A. & Rose, D.R. Comparison of kifunensine and 1-deoxymannojirimycin binding to class I and II alpha-mannosidases demonstrates different saccharide distortions in inverting and retaining catalytic mechanisms. Biochemistry 42, 13812–13816 (2003).

    Article  CAS  Google Scholar 

  9. Wen, X., Yuan, Y., Kuntz, D.A., Rose, D.R. & Pinto, B.M. A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II. Biochemistry 44, 6729–6737 (2005).

    Article  CAS  Google Scholar 

  10. Ducros, V. et al. Substrate distortion by a β-mannanase: snapshots of the Michaelis and covalent intermediate complexes suggest a B2,5 conformation for the transition-state. Angew. Chem. Int. Ed. 41, 2824–2827 (2002).

    Article  CAS  Google Scholar 

  11. Stoddart, J.F. Stereochemistry of Carbohydrates (Wiley Interscience, Toronto, 1971).

  12. Walaszek, Z., Horton, D. & Ekiel, I. Conformational studies on aldonolactones by NMR spectroscopy. Conformations of D-glucono-1,5-lactone and D-manno-1,5-lactone in solution. Carbohydr. Res. 106, 193–201 (1982).

    Article  CAS  Google Scholar 

  13. Heck, M.P. et al. Cyclic amidine sugars as transition-state analogue inhibitors of glycosidases: potent competitive inhibitors of mannosidases. J. Am. Chem. Soc. 126, 1971–1979 (2004).

    Article  CAS  Google Scholar 

  14. Numao, S., Kuntz, D.A., Withers, S.G. & Rose, D.R. Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J. Biol. Chem. 278, 48074–48083 (2003).

    Article  CAS  Google Scholar 

  15. Tailford, L.E. et al. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the β-mannosidase, Man2a. J. Biol. Chem. 282, 11291–11299 (2007).

    Article  CAS  Google Scholar 

  16. Best, W.M. et al. The synthesis of a carbohydrate-like dihydrooxazine and tetrahydrooxazine as putative inhibitors of glycoside hydrolases: a direct synthesis of isofagomine. Can. J. Chem. 80, 857–865 (2002).

    Article  CAS  Google Scholar 

  17. Macdonald, J.M. & Stick, R.V. The synthesis of a D-glucose-like piperidin-2-one: isofagomine lactam. Aust. J. Chem. 57, 449–453 (2004).

    Article  CAS  Google Scholar 

  18. Amorim, L. et al. RCM as a tool to freeze conformation of monosaccharides: synthesis of a beta-mannopyranoside mimic adopting a conformation close to the biologically relevant B2,5 boat. Tetrahedr. Lett. 47, 8887–8891 (2006).

    Article  CAS  Google Scholar 

  19. Goddard-Borger, E.D. & Stick, R.V. An expeditious synthesis of isofagomine. Aust. J. Chem. 60, 211–213 (2007).

    Article  CAS  Google Scholar 

  20. Meloncelli, P.J. & Stick, R.V. Improvements to the synthesis of isofagomine, noeuromycin, azafagomine, and isofagomine lactam, and a synthesis of azanoeuromycin and 'guanidine' isofagomine. Aust. J. Chem. 59, 827–833 (2006).

    Article  CAS  Google Scholar 

  21. Terinek, M. & Vasella, A. Synthesis of C(2)-substituted manno-configured tetrahydroimidazopyridines and their evaluation as inhibitors of snail beta-mannosidase. Helv. Chim. Acta 86, 3482–3509 (2003).

    Article  CAS  Google Scholar 

  22. Bohm, M., Lorthiois, E., Meyyappan, M. & Vasella, A. Isoquinuclidine mimics of beta-D-glucopyranosides: differences and similarities in the mechanism of action of some beta-D-glucosidases and a beta-D-mannosidase. Helv. Chim. Acta 86, 3818–3835 (2003).

    Article  Google Scholar 

  23. Legler, G. & Julich, E. Synthesis of 5-amino-5-deoxy-D-mannopyranose and 1,5-di-deoxy-1,5-imino-D-mannitol, and inhibition of alpha-D-mannosidases and beta-D-mannosidases. Carbohydr. Res. 128, 61–72 (1984).

    Article  CAS  Google Scholar 

  24. Gloster, T.M. et al. Glycosidase inhibition: an assessment of the binding of eighteen putative transition-state mimics. J. Am. Chem. Soc. 129, 2345–2354 (2007).

    Article  CAS  Google Scholar 

  25. Gloster, T.M. et al. Structural, kinetic and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors. Biochemistry 45, 11879–11884 (2006).

    Article  CAS  Google Scholar 

  26. Wicki, J., Williams, S.J. & Withers, S.G. Transition-state mimicry by glycosidase inhibitors: a critical kinetic analysis. J. Am. Chem. Soc. 129, 4530–4531 (2007).

    Article  CAS  Google Scholar 

  27. Zechel, D.L. et al. Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to two β-glucosidases. J. Am. Chem. Soc. 125, 14313–14323 (2003).

    Article  CAS  Google Scholar 

  28. Zechel, D.L. et al. Mechanism, mutagenesis, and chemical rescue of beta-mannosidase from Cellulomonas fimi. Biochemistry 42, 7195–7204 (2003).

    Article  CAS  Google Scholar 

  29. Capon, B. Mechanism in carbohydrate chemistry. Chem. Rev. 69, 407–498 (1969).

    Article  CAS  Google Scholar 

  30. Vincent, F. et al. Common inhibition of both β-glucosidase and β-mannosidase by isofagomine lactam reflects different conformational itineraries for pyranoside hydrolysis. ChemBioChem 5, 1596–1599 (2004).

    Article  CAS  Google Scholar 

  31. Money, V.A. et al. Substrate distortion by a lichenase highlights the different conformational itineraries harnessed by related glycoside hydrolases. Angew. Chem. Int. Ed. 45, 5136–5140 (2006).

    Article  CAS  Google Scholar 

  32. Bartlett, P.A. & Marlowe, C.K. Phosphonamidates as transition-state analog inhibitors of thermolysin. Biochemistry 22, 4618–4624 (1983).

    Article  CAS  Google Scholar 

  33. Whitworth, G.E. et al. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: structural and mechanistic insights into inhibitor selectivity and transition state poise. J. Am. Chem. Soc. 129, 635–644 (2007).

    Article  CAS  Google Scholar 

  34. Berland, C.R., Sigurskjold, B.W., Stoffer, B., Frandsen, T.P. & Svensson, B. Thermodynamics of inhibitor binding to mutant forms of glucoamylase from Aspergillus niger determined by isothermal titration calorimetry. Biochemistry 34, 10153–10161 (1995).

    Article  CAS  Google Scholar 

  35. Withers, S.G., Namchuk, M. & Mosi, R. in Iminosugars As Glycosidase Inhibitors. Nojirimycin and Beyond (ed. Stütz, A.E.) 188–206 (Wiley-VCH, Weinheim, Germany, 1999).

    Google Scholar 

  36. Mosi, R. et al. Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase. Biochemistry 37, 17192–17198 (1998).

    Article  CAS  Google Scholar 

  37. Mader, M.M. & Bartlett, P.A. Binding energy and catalysis: the implications for transition state analogs and catalytic antibodies. Chem. Rev. 97, 1281–1301 (1997).

    Article  CAS  Google Scholar 

  38. Liu, H.Z., Liang, X.F., Søhoel, H., Bülow, A. & Bols, M. Noeuromycin, a glycosyl cation mimic that strongly inhibits glycosidases. J. Am. Chem. Soc. 123, 5116–5117 (2001).

    Article  CAS  Google Scholar 

  39. Tong, M.K., Papandreou, G. & Ganem, B. Potent, broad-spectrum inhibition of glycosidases by an amidine derivative of D-glucose. J. Am. Chem. Soc. 112, 6137–6139 (1990).

    Article  CAS  Google Scholar 

  40. Papandreou, G., Tong, M.K. & Ganem, B. Amidine, amidrazone, and amidoxime derivatives of monosaccharide aldonolactams: synthesis and evaluation as glycosidase inhibitors. J. Am. Chem. Soc. 115, 11682–11690 (1993).

    Article  CAS  Google Scholar 

  41. Hoos, R. et al. D-Gluconhydroximo-1,5-lactam and related N-arylcarbamates - theoretical calculations, structure, synthesis, and inhibitory effect on beta-glucosidases. Helv. Chim. Acta 76, 2666–2686 (1993).

    Article  CAS  Google Scholar 

  42. Snider, M.J. & Wolfenden, R. Site-bound water and the shortcomings of a less than perfect transition state analogue. Biochemistry 40, 11364–11371 (2001).

    Article  CAS  Google Scholar 

  43. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  46. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Biotechnology and Biological Sciences Research Council (BBSRC) is thanked for funding. G.J.D. is the recipient of a Royal Society-Wolfson Research Merit Award. S. Withers (University of British Columbia) is thanked for provision of 4-nitrophenyl 2-deoxy-β-D-arabino-hexopyranoside. A.V. thanks the Swiss National Science Foundation, Hoffmann-La Roche (Basle) and Syngenta (Basle) for generous support. This work is dedicated by M.-P.H., A.V. and J.G. to the memory of C. Mioskowski (deceased on June 2, 2007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harry J Gilbert or Gideon J Davies.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tailford, L., Offen, W., Smith, N. et al. Structural and biochemical evidence for a boat-like transition state in β-mannosidases. Nat Chem Biol 4, 306–312 (2008). https://doi.org/10.1038/nchembio.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing