Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of p38α regulation by hematopoietic tyrosine phosphatase

Abstract

MAP kinases regulate essential cellular events, including cell growth, differentiation and inflammation. The solution structure of a complete MAPK–MAPK-regulatory protein complex, p38α–HePTP, was determined, enabling a comprehensive investigation of the molecular basis of specificity and fidelity in MAPK regulation. Structure determination was achieved by combining NMR spectroscopy and small-angle X-ray scattering data with a new ensemble calculation–refinement procedure. We identified 25 residues outside of the HePTP kinase interaction motif necessary for p38α recognition. The complex adopts an extended conformation in solution and rarely samples the conformation necessary for kinase deactivation. Complex formation also does not affect the N-terminal lobe, the activation loop of p38α or the catalytic domain of HePTP. Together, these results show how the downstream tyrosine phosphatase HePTP regulates p38α and provide for fundamentally new insights into MAPK regulation and specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sequence-specific backbone assignment of p38α is the most complete of any MAPK.
Figure 2: 2D [1H,15N]-TROSY spectra obtained for [2H,15N]p38α in complex with various HePTP domains.
Figure 3: The p38α binding site for HePTP extends beyond the KIM binding pocket.
Figure 4: Val31 binds hydrophobic pocket ΦB in p38α.
Figure 5: The p38–HePTP resting state complex is extended in solution.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Raman, M., Chen, W. & Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene 26, 3100–3112 (2007).

    Article  CAS  Google Scholar 

  2. Kim, E.K. & Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396–405 (2010).

    Article  CAS  Google Scholar 

  3. Cobb, M.H. et al. Regulation of the MAP kinase cascade. Cell. Mol. Biol. Res. 40, 253–256 (1994).

    CAS  PubMed  Google Scholar 

  4. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    CAS  Google Scholar 

  5. Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  6. Kallunki, T. et al. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996–3007 (1994).

    Article  CAS  Google Scholar 

  7. Akella, R., Min, X., Wu, Q., Gardner, K.H. & Goldsmith, E.J. The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution. Structure 18, 1571–1578 (2010).

    Article  CAS  Google Scholar 

  8. Chang, C.I., Xu, B.E., Akella, R., Cobb, M.H. & Goldsmith, E.J. Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol. Cell 9, 1241–1249 (2002).

    Article  CAS  Google Scholar 

  9. Heo, Y.S. et al. Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J. 23, 2185–2195 (2004).

    Article  CAS  Google Scholar 

  10. Liu, S., Sun, J.P., Zhou, B. & Zhang, Z.Y. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc. Natl. Acad. Sci. USA 103, 5326–5331 (2006).

    Article  CAS  Google Scholar 

  11. Ma, W. et al. Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase. Structure 18, 1502–1511 (2010).

    Article  CAS  Google Scholar 

  12. Reményi, A., Good, M.C., Bhattacharyya, R.P. & Lim, W.A. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol. Cell 20, 951–962 (2005).

    Article  Google Scholar 

  13. Zhou, T., Sun, L., Humphreys, J. & Goldsmith, E.J. Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14, 1011–1019 (2006).

    Article  CAS  Google Scholar 

  14. Critton, D.A., Tortajada, A., Stetson, G., Peti, W. & Page, R. Structural basis of substrate recognition by hematopoietic tyrosine phosphatase. Biochemistry 47, 13336–13345 (2008).

    Article  CAS  Google Scholar 

  15. Saxena, M., Williams, S., Brockdorff, J., Gilman, J. & Mustelin, T. Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J. Biol. Chem. 274, 11693–11700 (1999).

    Article  CAS  Google Scholar 

  16. Muñoz, J.J., Tarrega, C., Blanco-Aparicio, C. & Pulido, R. Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38α is determined by a kinase specificity sequence and influenced by reducing agents. Biochem. J. 372, 193–201 (2003).

    Article  Google Scholar 

  17. Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110–116 (2000).

    Article  CAS  Google Scholar 

  18. Zhang, J., Zhou, B., Zheng, C.F. & Zhang, Z.Y. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. J. Biol. Chem. 278, 29901–29912 (2003).

    Article  CAS  Google Scholar 

  19. Zanke, B. et al. Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur. J. Immunol. 22, 235–239 (1992).

    Article  CAS  Google Scholar 

  20. Lombroso, P.J., Murdoch, G. & Lerner, M. Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc. Natl. Acad. Sci. USA 88, 7242–7246 (1991).

    Article  CAS  Google Scholar 

  21. Hendriks, W., Schepens, J., Brugman, C., Zeeuwen, P. & Wieringa, B. A novel receptor-type protein tyrosine phosphatase with a single catalytic domain is specifically expressed in mouse brain. Biochem. J. 305, 499–504 (1995).

    Article  CAS  Google Scholar 

  22. Saxena, M., Williams, S., Tasken, K. & Mustelin, T. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat. Cell Biol. 1, 305–311 (1999).

    Article  CAS  Google Scholar 

  23. Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.M. & Wilson, K.P. The structure of phosphorylated p38γ is monomeric and reveals a conserved activation-loop conformation. Structure 7, 1057–1065 (1999).

    Article  CAS  Google Scholar 

  24. Diskin, R., Engelberg, D. & Livnah, O. A novel lipid binding site formed by the MAP kinase insert in p38α. J. Mol. Biol. 375, 70–79 (2008).

    Article  CAS  Google Scholar 

  25. Masterson, L.R. et al. Dynamics connect substrate recognition to catalysis in protein kinase A. Nat. Chem. Biol. 6, 821–828 (2010).

    Article  CAS  Google Scholar 

  26. Masterson, L.R., Mascioni, A., Traaseth, N.J., Taylor, S.S. & Veglia, G. Allosteric cooperativity in protein kinase A. Proc. Natl. Acad. Sci. USA 105, 506–511 (2008).

    Article  CAS  Google Scholar 

  27. Zhang, J. et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463, 501–506 (2010).

    Article  CAS  Google Scholar 

  28. Piserchio, A. et al. Solution NMR insights into docking interactions involving inactive ERK2. Biochemistry 50, 3660–3672 (2011).

    Article  CAS  Google Scholar 

  29. Vogtherr, M. et al. NMR backbone assignment of the mitogen-activated protein (MAP) kinase p38. J. Biomol. NMR 32, 175 (2005).

    Article  CAS  Google Scholar 

  30. Esposito, V. et al. NMR assignment of the cAMP-binding domain A of the PKA regulatory subunit. J. Biomol. NMR 36 (suppl. 1), 64 (2006).

    Article  Google Scholar 

  31. Vajpai, N. et al. Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Biomol. NMR Assign. 2, 41–42 (2008).

    Article  CAS  Google Scholar 

  32. Perry, J.J., Harris, R.M., Moiani, D., Olson, A.J. & Tainer, J.A. p38α MAP kinase C-terminal domain binding pocket characterized by crystallographic and computational analyses. J. Mol. Biol. 391, 1–11 (2009).

    Article  CAS  Google Scholar 

  33. Hoffman, A.D., Urbatsch, I.L. & Vogel, P.D. Nucleotide binding to the human multidrug resistance protein 3, MRP3. Protein J. 29, 373–379 (2010).

    Article  CAS  Google Scholar 

  34. Delannoy, S., Urbatsch, I.L., Tombline, G., Senior, A.E. & Vogel, P.D. Nucleotide binding to the multidrug resistance P-glycoprotein as studied by ESR spectroscopy. Biochemistry 44, 14010–14019 (2005).

    Article  CAS  Google Scholar 

  35. Fitzgerald, C.E. et al. Structural basis for p38α MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Nat. Struct. Biol. 10, 764–769 (2003).

    Article  CAS  Google Scholar 

  36. Vogtherr, M. et al. NMR characterization of kinase p38 dynamics in free and ligand-bound forms. Angew. Chem. Int. Edn Engl. 45, 993–997 (2006).

    Article  CAS  Google Scholar 

  37. Kornev, A.P., Haste, N.M., Taylor, S.S. & Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA 103, 17783–17788 (2006).

    Article  CAS  Google Scholar 

  38. Mustelin, T., Tautz, L. & Page, R. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site. J. Mol. Biol. 354, 150–163 (2005).

    Article  CAS  Google Scholar 

  39. Jeeves, M., McClelland, D.M., Barr, A.J. & Overduin, M. Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34 kDa catalytic domain of human PTPN7. Biomol. NMR Assign. 2, 101–103 (2008).

    Article  CAS  Google Scholar 

  40. Gong, H. & Freed, K.F. Electrostatic solvation energy for two oppositely charged ions in a solvated protein system: salt bridges can stabilize proteins. Biophys. J. 98, 470–477 (2010).

    Article  CAS  Google Scholar 

  41. Różycki, B., Kim, Y.C. & Hummer, G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19, 109–116 (2011).

    Article  Google Scholar 

  42. Balasu, M.C. et al. Interface analysis of the complex between ERK2 and PTP-SL. PLoS ONE 4, e5432 (2009).

    Article  Google Scholar 

  43. Peti, W. & Page, R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif. 51, 1–10 (2007).

    Article  CAS  Google Scholar 

  44. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  45. Leonard, T.A., Rozycki, B., Saidi, L.F., Hummer, G. & Hurley, J.H. Crystal structure and allosteric activation of protein kinase C βII. Cell 144, 55–66 (2011).

    Article  CAS  Google Scholar 

  46. Yang, S., Blachowicz, L., Makowski, L. & Roux, B. Multidomain assembled states of Hck tyrosine kinase in solution. Proc. Natl. Acad. Sci. USA 107, 15757–15762 (2010).

    Article  CAS  Google Scholar 

  47. Franke, D. & Svergun, D.I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Yang and M. Allaire (National Synchrotron Light Source, NSLS) for their support at NSLS beamline X9. The authors thank P. Vogel (Southern Methodist University) for providing SL-ATP for the titration studies. This research was supported by grant RSG-08-067-01-LIB from the American Cancer Society to R.P. B.R. was supported by a Marie Curie International Outgoing Fellowship within the Seventh European Community Framework Program. B.R. and G.H. were supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health (NIH). Use of the NSLS at Brookhaven National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-98CH10886. 800 MHz NMR data were recorded at Brandeis University and were purchased with support from NIH S10-RR017269. Molecular simulations were performed on the Biowulf computing cluster at NIH.

Author information

Authors and Affiliations

Authors

Contributions

D.M.F. and D.K. cloned and purified all proteins. D.M.F. and W.P. performed and analyzed all NMR measurements. D.M.F., W.P. and R.P. performed and analyzed the SAXS measurements. D.K. performed all ITC measurements. R.P. and W.P. helped design the biochemical and NMR experiments. B.R. and G.H. performed all EROS and EROS-NMR calculations. R.P. and W.P. wrote the paper and all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Rebecca Page or Wolfgang Peti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 845 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, D., Różycki, B., Koveal, D. et al. Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. Nat Chem Biol 7, 916–924 (2011). https://doi.org/10.1038/nchembio.707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing