Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

(R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2

Abstract

Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid and the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamide. Evaluation of a series of COX-2 inhibitors revealed that many weak competitive inhibitors of arachidonic acid oxygenation are potent inhibitors of endocannabinoid oxygenation. (R) enantiomers of ibuprofen, naproxen and flurbiprofen, which are considered to be inactive as COX-2 inhibitors, are potent 'substrate-selective inhibitors' of endocannabinoid oxygenation. Crystal structures of the COX-2–(R)-naproxen and COX-2–(R)-flurbiprofen complexes verified this unexpected binding and defined the orientation of the (R) enantiomers relative to (S) enantiomers. (R)-Profens selectively inhibited endocannabinoid oxygenation by lipopolysaccharide-stimulated dorsal root ganglion (DRG) cells. Substrate-selective inhibition provides new tools for investigating the role of COX-2 in endocannabinoid oxygenation and a possible explanation for the ability of (R)-profens to maintain endocannabinoid tone in models of neuropathic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of (R)-naproxen within the mCOX-2 active site.
Figure 2: Binding of (R)-flurbiprofen within the mCOX-2 active site.
Figure 3: Analysis of DRGs.
Figure 4: Inhibition of eicosanoid synthesis in stimulated DRGs by (R)-flurbiprofen, (R)-naproxen and (R)-ibuprofen.
Figure 5: Comparison of the effects of (R)-flurbiprofen, (R)-naproxen and (R)-ibuprofen on substrate concentrations in basal versus stimulated DRGs.
Figure 6: The mechanism of COX-2 substrate-selective inhibition of endocannabinoid oxygenation by rapid, reversible inhibitors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Di Marzo, V., De Petrocellis, L. & Bisogno, T. The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb. Exp. Pharmacol. 168, 147–185 (2005).

    Article  CAS  Google Scholar 

  2. Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    Article  CAS  Google Scholar 

  3. Kogan, N.M. & Mechoulam, R. The chemistry of endocannabinoids. J. Endocrinol. Invest. 29, 3–14 (2006).

    CAS  PubMed  Google Scholar 

  4. Ueda, N. et al. Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Biochim. Biophys. Acta 1254, 127–134 (1995).

    Article  Google Scholar 

  5. Yu, M., Ives, D. & Ramesha, C.S. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J. Biol. Chem. 272, 21181–21186 (1997).

    Article  CAS  Google Scholar 

  6. Kozak, K.R., Rowlinson, S.W. & Marnett, L.J. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem. 275, 33744–33749 (2000).

    Article  CAS  Google Scholar 

  7. Snider, N.T., Walker, V.J. & Hollenberg, P.F. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol. Rev. 62, 136–154 (2010).

    Article  CAS  Google Scholar 

  8. Chen, J.K. et al. Identification of novel endogenous cytochrome P450 arachidonate metabolites with high affinity for cannabinoid receptors. J. Biol. Chem. 283, 24514–24524 (2008).

    Article  CAS  Google Scholar 

  9. Nirodi, C.S., Crews, B.C., Kozak, K.R., Morrow, J.D. & Marnett, L.J. The glyceryl ester of prostaglandin E2 mobilizes calcium and activates signal transduction in RAW264.7 cells. Proc. Natl. Acad. Sci. USA 101, 1840–1845 (2004).

    Article  CAS  Google Scholar 

  10. Sang, N., Zhang, J. & Chen, C. PGE2 glycerol ester, a COX-2 oxidative metabolite of 2-arachidonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons. J. Physiol. (Lond.) 572, 735–745 (2006).

    Article  CAS  Google Scholar 

  11. Sang, N., Zhang, J. & Chen, C. COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. J. Neurochem. 102, 1966–1977 (2007).

    Article  CAS  Google Scholar 

  12. Hu, S.S., Bradshaw, H.B., Chen, J.S., Tan, B. & Walker, J.M. Prostaglandin E2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFkappaB activity. Br. J. Pharmacol. 153, 1538–1549 (2008).

    Article  CAS  Google Scholar 

  13. Richie-Jannetta, R. et al. Structural determinants for calcium mobilization by prostaglandin E2 and prostaglandin F2α glyceryl esters in RAW 264.7 cells and H1819 cells. Prostaglandins Other Lipid Mediat. 92, 19–24 (2010).

    Article  CAS  Google Scholar 

  14. Cravatt, B.F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  Google Scholar 

  15. Dinh, T.P., Kathuria, S. & Piomelli, D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol. Pharmacol. 66, 1260–1264 (2004).

    Article  CAS  Google Scholar 

  16. Piomelli, D., Giuffrida, A., Calignano, A. & Rodriguez de Fonseca, F. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci. 21, 218–224 (2000).

    Article  CAS  Google Scholar 

  17. Cravatt, B.F. & Lichtman, A.H. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr. Opin. Chem. Biol. 7, 469–475 (2003).

    Article  CAS  Google Scholar 

  18. Long, J.Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44 (2009).

    Article  CAS  Google Scholar 

  19. Guay, J., Bateman, K., Gordon, R., Mancini, J. & Riendeau, D. Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J. Biol. Chem. 279, 24866–24872 (2004).

    Article  CAS  Google Scholar 

  20. Prusakiewicz, J.J., Duggan, K.C., Rouzer, C.A. & Marnett, L.J. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry 48, 7353–7355 (2009).

    Article  CAS  Google Scholar 

  21. Rimon, G. et al. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. Proc. Natl. Acad. Sci. USA 107, 28–33 (2010).

    Article  CAS  Google Scholar 

  22. Kulmacz, R.J. & Lands, W.E.M. Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti inflammatory agents. J. Biol. Chem. 260, 12572–12578 (1985).

    CAS  PubMed  Google Scholar 

  23. Dong, L. et al. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. J. Biol. Chem. 286, 19035–19046 (2011).

    Article  CAS  Google Scholar 

  24. Bhattacharyya, D.K., Lecomte, M., Rieke, C.J., Garavito, R.M. & Smith, W.L. Involvement of arginine 120, glutamate 524, and tyrosine 355 in the binding of arachidonate and 2-phenylpropionic acid inhibitors to the cyclooxygenase active site of ovine prostaglandin endoperoxide H synthase-1. J. Biol. Chem. 271, 2179–2184 (1996).

    Article  CAS  Google Scholar 

  25. Duggan, K.C. et al. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug, naproxen. J. Biol. Chem. 285, 34950–34959 (2010).

    Article  CAS  Google Scholar 

  26. Selinsky, B.S., Gupta, K., Sharkey, C.T. & Loll, P.J. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 40, 5172–5180 (2001).

    Article  CAS  Google Scholar 

  27. Kurumbail, R.G. et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384, 644–648 (1996).

    Article  CAS  Google Scholar 

  28. Lötsch, J., Geisslinger, G., Mohammadian, P., Brune, K. & Kobal, G. Effects of flurbiprofen enantiomers on pain-related chemo-somatosensory evoked potentials in human subjects. Br. J. Clin. Pharmacol. 40, 339–346 (1995).

    Article  Google Scholar 

  29. Bishay, P. et al. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLoS ONE 5, e10628 (2010).

    Article  Google Scholar 

  30. Jamali, F., Berry, B.W., Tehrani, M.R. & Russell, A.S. Stereoselective pharmacokinetics of flurbiprofen in humans and rats. J. Pharm. Sci. 77, 666–669 (1988).

    Article  CAS  Google Scholar 

  31. Brune, K., Geisslinger, G. & Menzel-Soglowek, S. Pure enantiomers of 2-arylpropionic acids: tools in pain research and improved drugs in rheumatology. J. Clin. Pharmacol. 32, 944–952 (1992).

    Article  CAS  Google Scholar 

  32. Uddin, M.J. et al. Selective visualization of cyclooxygenase-2 in inflammation and cancer by targeted fluorescent imaging agents. Cancer Res. 70, 3618–3627 (2010).

    Article  CAS  Google Scholar 

  33. Rouzer, C.A. & Marnett, L.J. Glycerylprostaglandin synthesis by resident peritoneal macrophages in response to a zymosan stimulus. J. Biol. Chem. 280, 26690–26700 (2005).

    Article  CAS  Google Scholar 

  34. Yang, H. & Chen, C. Cyclooxygenase-2 in synaptic signaling. Curr. Pharm. Des. 14, 1443–1451 (2008).

    Article  CAS  Google Scholar 

  35. Woodward, D.F. et al. The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products. Pharmacol. Ther. 120, 71–80 (2008).

    Article  CAS  Google Scholar 

  36. Liang, Y., Woodward, D.F. & Guzman, V.M. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. Br. J. Pharmacol. 154, 1079–1093 (2008).

    Article  CAS  Google Scholar 

  37. Di Marzo, V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol. Res. 60, 77–84 (2009).

    Article  CAS  Google Scholar 

  38. Blankman, J.L., Simon, G.M. & Cravatt, B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  Google Scholar 

  39. Xie, S. et al. Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2. Chem. Res. Toxicol. 23, 1890–1904 (2010).

    Article  CAS  Google Scholar 

  40. Glaser, S.T. & Kaczocha, M. Cyclooxygenase-2 mediates anandamide metabolism in the mouse brain. J. Pharmacol. Exp. Ther. 335, 380–388 (2010).

    Article  CAS  Google Scholar 

  41. Rowlinson, S.W., Crews, B.C., Lanzo, C.A. & Marnett, L.J. The binding of arachidonic acid in the cyclooxygenase active site of mouse prostaglandin endoperoxide synthase-2 (COX-2): a putative L-shaped binding conformation utilizing the top channel region. J. Biol. Chem. 274, 23305–23310 (1999).

    Article  CAS  Google Scholar 

  42. Kalgutkar, A.S., Kozak, K.R., Crews, B.C., Hochgesang, J.G.P. & Marnett, L.J. Covalent modification of cyclooxygenase-2 (COX-2) by 2-(acetoxyphenyl)alkyl sulfides, a new class of selective COX-2 inactivators. J. Med. Chem. 41, 4800–4818 (1998).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276A, 307–326 (1997).

    Article  Google Scholar 

  44. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  46. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  47. Wu, H.H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat. Neurosci. 12, 1534–1541 (2009).

    Article  CAS  Google Scholar 

  48. Kingsley, P.J. & Marnett, L.J. LC-MS-MS analysis of neutral eicosanoids. Methods Enzymol. 433, 91–112 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the A.B. Hancock Jr. Memorial Laboratory for Cancer Research and by research (CA89450, GM15431, NS064278) and training grants (DA022873, DA031572) from the US National Institutes of Health. It is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by award RR-15301 from the National Center for Research Resources at the US National Institutes of Health. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. We are grateful to J. Harp for assistance with crystallography; K. Masuda, M. Brown, R. Stevens and B. Cravatt for a sample of FAAH; A. Brash for a sample of 15-lipoxygenase and J. Uddin for a sample of fluorocoxib A.

Author information

Authors and Affiliations

Authors

Contributions

J.J.P., K.C.D. and L.J.M. originated the project. K.C.D. performed all in vitro wild-type COX-2 inhibition experiments. D.J.H. performed all in vitro mutant COX-2 inhibition experiments. K.C.D., J.M. and S.B. determined the COX-2–(R)-naproxen crystal structure, and K.C.D. and S.B. determined the (R)-flurbiprofen crystal structure. Primary DRGs were harvested and cultured by J.L.S. and D.J.H. in the laboratory of B.D.C. D.J.H. designed and executed COX-2 inhibition experiments in DRGs as well as the imaging studies. D.J.H. and J.L.S. performed western blot analysis of DRGs. J.A.O. reviewed the data and offered critical commentary, and L.J.M. oversaw the research and wrote the manuscript, which was reviewed and edited by all authors.

Corresponding author

Correspondence to Lawrence J Marnett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duggan, K., Hermanson, D., Musee, J. et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat Chem Biol 7, 803–809 (2011). https://doi.org/10.1038/nchembio.663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing