Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Principles for designing fluorescent sensors and reporters

Sensors and reporters are among the most exciting tools used in cell biology. Now, they are increasingly used in developmental biology and medicine because they allow us to spy on events in living cells and organisms, including humans, in real time and with high spatial resolution. Herein, we discuss multiple design options for fluorescent sensors and reporters as well as strategies to improve their properties and increase development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example reporters and sensors with typical time resolution and application range.

References

  1. Waggoner, A. J. Membr. Biol. 27, 317–334 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Tsien, R.Y. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  4. Tsien, R.Y. Nature 290, 527–528 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Fonović, M. & Bogyo, M. Expert Rev. Proteomics 5, 721–730 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Piljić, A., de Diego, I., Wilmanns, M., & Schultz, C. ACS Chem. Biol. 6, doi:10.2021/cb100402n (2011).

  10. Brun, M.A., Tan, K.T., Nakata, E., Hinner, M.J. & Johnsson, K. J. Am. Chem. Soc. 131, 5873–5884 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Adams, S.R. et al. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Plass, T., Milles, S., Koehler, C., Schultz, C. & Lemke, E.A. Angew. Chem. Int. Edn Engl. 50, 3878–3881 (2011).

    Article  CAS  Google Scholar 

  13. Liu, C.C. & Schultz, P.G. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Piljic, A. & Schultz, C. ACS Chem. Biol. 3, 156–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Joliot, A. & Prochiantz, A. Nat. Cell Biol. 6, 189–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ozaki, S., DeWald, D.B., Shope, J.C., Chen, J. & Prestwich, G.D. Proc. Natl. Acad. Sci. USA 97, 11286–11291 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenbaum, D. et al. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Yudushkin, I.A. et al. Science 315, 115–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gerke, V., Creutz, C.E. & Moss, S.E. Nat. Rev. Mol. Cell Biol. 6, 449–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, T. et al. Proc. Natl. Acad. Sci. USA 101, 17867–17872 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cobos-Correa, A., Trojanek, J.B., Diemer, S., Mall, M.A. & Schultz, C. Nat. Chem. Biol. 5, 628–630 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kuhn, B., Denk, W. & Bruno, R.M. Proc. Natl. Acad. Sci. USA 105, 7588–7593 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keller, P.J. et al. Nat. Methods 7, 637–642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradley, J., Luo, R., Otis, T.S. & DiGregorio, D.A. J. Neurosci. 29, 9197–9209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patterson, G., Davidson, M., Manley, S. & Lippincott-Schwartz, J. Annu. Rev. Phys. Chem. 61, 345–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. Science 320, 664–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward A Lemke or Carsten Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, E., Schultz, C. Principles for designing fluorescent sensors and reporters. Nat Chem Biol 7, 480–483 (2011). https://doi.org/10.1038/nchembio.620

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing