Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrasensitive in situ visualization of active glucocerebrosidase molecules

Abstract

Deficiency of glucocerebrosidase (GBA) underlies Gaucher disease, a common lysosomal storage disorder. Carriership for Gaucher disease has recently been identified as major risk for parkinsonism. Presently, no method exists to visualize active GBA molecules in situ. We here report the design, synthesis and application of two fluorescent activity-based probes allowing highly specific labeling of active GBA molecules in vitro and in cultured cells and mice in vivo. Detection of in vitro labeled recombinant GBA on slab gels after electrophoresis is in the low attomolar range. Using cell or tissue lysates, we obtained exclusive labeling of GBA molecules. We present evidence from fluorescence-activated cell sorting analysis, fluorescence microscopy and pulse-chase experiments of highly efficient labeling of GBA molecules in intact cells as well as tissues of mice. In addition, we illustrate the use of the fluorescent probes to study inhibitors and tentative chaperones in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: In vitro labeling of GBA with MDW933 and MDW941.
Figure 3: In situ labeling of glucocerebrosidase.
Figure 4: Labeling of glucocerebrosidase in mice.
Figure 5: Labeling of mutant forms of glucocerebrosidase.

Similar content being viewed by others

References

  1. Brady, R.O., Kanfer, J.N., Bradley, R.M. & Shapiro, D. Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J. Clin. Invest. 45, 1112–1115 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grabowski, G.A. Phenotype, diagnosis, and treatment of Gaucher's disease. Lancet 372, 1263–1271 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Goker-Alpan, O. et al. The spectrum of Parkinsonian manifestations associated with glucocerebrosidase mutations. Arch. Neurol. 65, 1353–1357 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Weely, S. et al. Clinical genotype of Gaucher disease in relation to properties of mutant glucocerebrosidase in cultured fibroblasts. Biochim. Biophys. Acta 1096, 301–311 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Lachmann, R.H., Grant, I.R., Halsall, D. & Cox, T.M. Twin pairs showing discordance of phenotype in adult Gaucher's disease. QJM 97, 199–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Barton, N.W. et al. Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher's disease. N. Engl. J. Med. 324, 1464–1470 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Grabowski, G.A. et al. Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann. Intern. Med. 122, 33–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Aerts, J.M., Hollak, C.E., Boot, R.G., Groener, J.E. & Maas, M. Substrate reduction therapy of glycosphingolipid storage disorders. J. Inherit. Metab. Dis. 29, 449–456 (2006).

    Article  PubMed  Google Scholar 

  9. Platt, F.M., Neises, G.R., Dwek, R.A. & Butters, T.D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).

    CAS  PubMed  Google Scholar 

  10. Jonsson, L.M.V. et al. Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts. Eur. J. Biochem. 164, 171–179 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Ohashi, T. et al. Characterization of human glucocerebrosidase from different mutant alleles. J. Biol. Chem. 266, 3661–3667 (1991).

    CAS  PubMed  Google Scholar 

  12. Sawkar, A.R. et al. Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem. Biol. 12, 1235–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Sawkar, A.R. et al. Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc. Natl. Acad. Sci. USA 99, 15428–15433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ron, I. & Horowitz, M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum. Mol. Genet. 14, 2387–2398 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Mu, T.W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steet, R.A. et al. The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms. Proc. Natl. Acad. Sci. USA 103, 13813–13818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, Z., Sawkar, A.R., Whalen, L.J., Wong, C.H. & Kelly, J.W. Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J. Med. Chem. 50, 94–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lieberman, R.L. et al. Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat. Chem. Biol. 3, 101–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kornhaber, G.J. et al. Isofagomine induced stabilization of glucocerebrosidase. ChemBioChem 9, 2643–2649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, J.S., Edwards, N.J., Hong, Y.B. & Murray, G.J. Isofagomine increases lysosomal delivery of exogenous glucocerebrosidase. Biochem. Biophys. Res. Commun. 369, 1071–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liou, B. & Grabowski, G.A. Participation of asparagine 370 and glutamine 235 in the catalysis by acid beta-glucosidase: the enzyme deficient in Gaucher disease. Mol. Genet. Metab. 97, 65–74 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rempel, B.P. & Withers, S.G. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18, 570–586 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Atsumi, S., Nosaka, C., Iinuma, H. & Umezawa, K. Accumulation of tissue glucosylsphingosine in Gaucher-like mouse induced by the glucosylceramidase inhibitor cyclophellitol. Arch. Biochem. Biophys. 304, 302–304 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Hansen, F.G., Bundgaard, E. & Madsen, R. A short synthesis of (+)-cyclophellitol. J. Org. Chem. 70, 10139 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Brumshtein, B. et al. Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid beta-glucosidase: insights into the mechanisms of chemical chaperone action in Gaucher disease. J. Biol. Chem. 282, 29052 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kacher, Y. et al. Acid beta-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Biol. Chem. 389, 1361–1369 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Overkleeft, H.S. et al. Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J. Biol. Chem. 273, 26522–26527 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Arribas, J.C. et al. Differential mechanism-based labeling and unequivocal activity assignment of the two active sites of intestinal lactase/phlorizin hydrolase. Eur. J. Biochem. 267, 6996–7005 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Aerts, J.M. et al. Glucocerebrosidase, a lysosomal enzyme that does not undergo oligosaccharide phosphorylation. Biochim. Biophys. Acta 964, 303–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. van Weely, S. et al. Role of pH in determining the cell-type-specific residual activity of glucocerebrosidase in type 1 Gaucher disease. J. Clin. Invest. 91, 1167–1175 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, H.H., Asano, N., Ishii, S., Ichikawa, Y. & Fan, J.Q. Hydrophilic iminosugar active-sitespecific chaperones increase residual glucocerebrosidase activity in fibroblasts from Gaucher patients. FEBS J. 273, 4082–4092 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Rudensky, B. et al. Fluorescent flow cytometric assay: a new diagnostic tool for measuring beta-glucocerebrosidase activity in Gaucher disease. Blood Cells Mol. Dis. 30, 97–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Gloster, T.M., Madsen, R. & Davies, G.J. Structural basis for cyclophellitol inhibition of a betaglucosidase. Org. Biomol. Chem. 5, 444–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Zechel, D.L. et al. Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to beta-glucosidases. J. Am. Chem. Soc. 125, 14313–14323 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Phenix, C.P. et al. Imaging of enzyme replacement therapy using PET. Proc. Natl. Acad. Sci. USA 107, 10842–10847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aerts, J.M.F.G. et al. A procedure for the rapid purification in high yield of human glucocerebrosidase using immunoaffinity chromatography with monoclonal antibodies. Anal. Biochem. 154, 655 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Boot, R.G. et al. Glucocerebrosidase genotype of Gaucher patients in The Netherlands: Limitations in prognostic value. Hum. Mutat. 10, 348 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Andersson, U., Butters, T.D., Dwek, R.A. & Platt, F.M. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem. Pharmacol. 59, 821 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from The Netherlands Organization for Scientific Research (NWO-CW, to M.D.W., W.W.K., R.G.B., G.v.d.M., H.S.O. and J.M.F.G.A.) and The Netherlands Proteomics Centre (to B.I.F. and H.S.O.) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.D.W. and W.W.K. designed the experiments. M.D.W., K.-Y.L. and A.M.C.H.v.d.N. conducted the synthesis, and W.W.K. conducted the kinetic experiments and the cell assays. J.A. conducted the microscopic analysis. A.S. conducted the in situ assays. W.E.D.-K. conducted the in vitro assays. B.B. conducted the structural modeling. G.K. and B.I.F. conducted the proteomic experiments. B.H. conducted the FACS analysis. C.E.M.H. conducted the tissue culture. R.O. conducted the animal experiments. R.G.B. supervised the cell assays. G.v.d.M. supervised the synthesis. H.S.O. and J.M.F.G.A. conceived of the idea and supervised the project.

Corresponding authors

Correspondence to Herman S Overkleeft or Johannes M F G Aerts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Methods and Supplementary Results (PDF 10099 kb)

Supplementary Video

Time-lapse microscopy of GBA labeling in intact fibroblasts. Cells incubated with 5 nM MDW941 6 were imaged every 5 minutes for 2 hours simultaneously using fluorescence microscopy and phase-contrast bright field microscopy. (AVI 180003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, M., Kallemeijn, W., Aten, J. et al. Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Nat Chem Biol 6, 907–913 (2010). https://doi.org/10.1038/nchembio.466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing