Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional regulation by small RNAs at sequences downstream from 3′ gene termini

Abstract

Transcriptome studies reveal many noncoding transcripts overlapping 3′ gene termini. The function of these transcripts is unknown. Here we have characterized transcription at the progesterone receptor (PR) locus and identified noncoding transcripts that overlap the 3′ end of the gene. Small RNAs complementary to sequences beyond the 3′ terminus of PR mRNA modulated expression of PR, recruited argonaute 2 to a 3′ noncoding transcript, altered occupancy of RNA polymerase II, induced chromatin changes at the PR promoter and affected responses to physiological stimuli. We found that the promoter and 3′ terminal regions of the PR locus are in close proximity, providing a potential mechanism for RNA-mediated control of transcription over long genomic distances. These results extend the potential for small RNAs to regulate transcription to target sequences beyond the 3′ termini of mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of PR mRNA and PR 3′ noncoding transcript.
Figure 2: Inhibition of PR expression in T47D cells by agRNAs complementary to sequences downstream from the terminus of PR mRNA.
Figure 3: Enhanced PR expression in MCF7 cells by an RNA complementary to a sequence downstream from the terminus of the PR 3′ UTR.
Figure 4: Effect of combining physiological stimuli with agRNAs.
Figure 5: Effect of 3′ or 5′ agRNAs on recruitment of AGO2 protein to the 3′ or 5′ noncoding transcripts at the PR locus.
Figure 6: 3C analysis of the PR locus.
Figure 7: Model for modulation of transcription by 3′ agRNAs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Siomi, H. & Siomi, M.C. On the road to reading the RNA-interference code. Nature 457, 396–404 (2009).

    Article  CAS  Google Scholar 

  2. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  Google Scholar 

  3. Ting, A.H., Schuebel, K.E., Herman, J.G. & Baylin, S.B. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    Article  CAS  Google Scholar 

  4. Janowski, B.A. et al. Inhibiting gene expression at transcription start sites in chromosomal DNA by antigene RNAs. Nat. Chem. Biol. 1, 216–222 (2005).

    Article  CAS  Google Scholar 

  5. Li, L.C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl. Acad. Sci. USA 103, 17337–17342 (2006).

    Article  CAS  Google Scholar 

  6. Janowski, B.A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol. 3, 166–173 (2007).

    Article  CAS  Google Scholar 

  7. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  8. Janowski, B.A. et al. Involvement of Ago1 and Ago2 link mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13, 787–792 (2006).

    Article  CAS  Google Scholar 

  9. Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  Google Scholar 

  10. Han, J., Kim, D. & Morris, K.V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl. Acad. Sci. 104, 12422–12427 (2007).

    Article  CAS  Google Scholar 

  11. Schwartz, J.C. et al. Antisense transcripts are targets for activating small RNAs. Nat. Struct. Mol. Biol. 15, 842–848 (2008).

    Article  CAS  Google Scholar 

  12. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. & Kinzler, K.W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  Google Scholar 

  13. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  Google Scholar 

  14. Sun, M., Hurst, L.D., Carmichael, G.G. & Chen, J. Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res. 33, 5533–5543 (2005).

    Article  CAS  Google Scholar 

  15. Gingeras, T.R. Origin of phenotypes: genes and transcripts. Genome Res. 17, 682–690 (2007).

    Article  CAS  Google Scholar 

  16. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).

    Article  CAS  Google Scholar 

  17. Amaral, P.P. & Mattick, J.S. Noncoding RNA in development. Mamm. Genome 19, 454–492 (2008).

    Article  CAS  Google Scholar 

  18. Chen, J.-M., Ferec, C. & Cooper, D.N. A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants. Hum. Genet. 120, 301–333 (2006).

    Article  CAS  Google Scholar 

  19. Kastner, P. et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9, 1603–1614 (1990).

    Article  CAS  Google Scholar 

  20. Birmingham, A. et al. 3′-UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  Google Scholar 

  21. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  22. Barski, A. et al. High resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  23. Keen, J.C. et al. Protein phosphatase 2A regulates estrogen receptor α (ER) expression through modulation of ER mRNA stability. J. Biol. Chem. 280, 29519–29524 (2005).

    Article  CAS  Google Scholar 

  24. Nardulli, A.M., Greene, G.L., O'Malley, B.W. & Katzenellenbogen, B.S. Regulation of progesterone receptor messenger ribonucleic acid and protein levels in MCF-7 cells by estradiol: analysis of estrogen's effect on progesterone receptor synthesis and degradation. Endocrinology 122, 935–944 (1988).

    Article  CAS  Google Scholar 

  25. Cho, H., Aronica, S.M. & Katzenellenbogen, B.S. Regulation of progesterone receptor gene expression in MCF-7 breast cancer cells: a comparison of the effects of cyclic adenosine 3′,5′-monophosphate, estradiol, insulin-like growth factor-1, and serum factors. Endocrinology 134, 658–664 (1994).

    Article  CAS  Google Scholar 

  26. Stoica, A., Saceda, M., Doraiswamy, V.L., Coleman, C. & Martin, M.B. Regulation of estrogen receptor-α gene expression by epidermal growth factor. J. Endocrinol. 165, 371–378 (2000).

    Article  CAS  Google Scholar 

  27. Zaragoza, D.B., Wilson, R.R., Mitchell, B.F. & Olson, D.M. The interleukin 1beta-induced expression of human prostaglandin F2α receptor messenger RNA in human myometrial-derived ULTR cells requires the transcription factor, NFkappaB. Biol. Reprod. 75, 697–704 (2006).

    Article  CAS  Google Scholar 

  28. Gilbert, C., Kristjuhan, A., Winkler, G.S. & Svejstrup, J.Q. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol. Cell 14, 457–464 (2004).

    Article  CAS  Google Scholar 

  29. Nelson, P.T. et al. A novel monoclonal antibody against human argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells. RNA 13, 1787–1792 (2007).

    Article  CAS  Google Scholar 

  30. O'Sullivan, J.M. et al. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet. 36, 1014–1018 (2004).

    Article  CAS  Google Scholar 

  31. Tan-Wong, S.M., French, J.D., Proudfoot, N.J. & Brown, M.A. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc. Natl. Acad. Sci. USA 105, 5160–5165 (2008).

    Article  CAS  Google Scholar 

  32. Tiwari, V.K. et al. PcG proteins, DNA methylation and gene repression by chromatin looping. PLoS Biol. 6, e306 (2008).

    Article  Google Scholar 

  33. Smith, T.M. et al. Complete genomic sequence and analysis of 117 kb of human DNA containing the Gene BRCA1. Genome Res. 6, 1029–1049 (1996).

    Article  CAS  Google Scholar 

  34. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  Google Scholar 

  35. Ma, Y. et al. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol. Endocrinol. 20, 14–34 (2006).

    Article  CAS  Google Scholar 

  36. Tsai, C.-L., Rowntree, R.K., Cohen, D.E. & Lee, J.T. Higher order chromatin structure at the X-inactivation center via looping DNA. Dev. Biol. 319, 416–425 (2008).

    Article  CAS  Google Scholar 

  37. Colley, S.M. & Leedman, P.J. SRA and its binding partners: an expanding role for RNA-binding co-regulators in nuclear receptor-mediated gene regulation. Crit. Rev. Biochem. Mol. Biol. 44, 25–33 (2009).

    Article  CAS  Google Scholar 

  38. Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K. & Gage, F.H. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793 (2004).

    Article  CAS  Google Scholar 

  39. Cassiday, L.A. & Maher, L.J. Having it both ways: transcription factors that bind RNA and DNA. Nucleic Acids Res. 30, 4118–4126 (2002).

    Article  CAS  Google Scholar 

  40. Kurokawa, R., Rosenfeld, M.G. & Glass, C.K. Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biol. 6, 233–236 (2009).

    Article  CAS  Google Scholar 

  41. D'Orso, I. & Frankel, A.D. Tat acetylation modulates assembly of a viral host RNA-protein transcription complex. Proc. Natl. Acad. Sci. USA 106, 3101–3106 (2009).

    Article  CAS  Google Scholar 

  42. Southgate, C., Zapp, M.L. & Green, M.R. Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345, 640–642 (1990).

    Article  CAS  Google Scholar 

  43. Willy, P.J., Kobayashi, R. & Kadonaga, J.T. A basal transcription factor that activates or represses transcription. Science 290, 982–985 (2000).

    Article  CAS  Google Scholar 

  44. Chahrour, M. et al. MeCP2, a key contributor to neurologic disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    Article  CAS  Google Scholar 

  45. Scsucova, S. et al. The repressor DREAM acts as a transcriptional activator on Vitamin D and retinoic acid response elements. Nucleic Acids Res. 33, 2269–2279 (2005).

    Article  CAS  Google Scholar 

  46. Dubnicoff, T. et al. Conversion of Dorsal from an activator to a repressor by the global corepressor Groucho. Genes Dev. 11, 2952–2957 (1997).

    Article  CAS  Google Scholar 

  47. Glass, C.K., Lipkin, S.M., Devary, O.V. & Rosenfeld, M.G. Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell 59, 697–708 (1989).

    Article  CAS  Google Scholar 

  48. Hershberger, P.A. et al. Regulation of endogenous gene expression in human non-small cell lung cancer cells by estrogen receptor ligands. Cancer Res. 65, 1598–1605 (2005).

    Article  CAS  Google Scholar 

  49. Goodrich, J.A. & Kugel, J.F. From bacteria to humans, chromatin to elongation, and activation to repression: the expanding roles of noncoding RNAs in regulating transcription. Crit. Rev. Biochem. Mol. Biol. 44, 3–15 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (NIGMS GM77253 to D.R.C., GM85080 to B.A.J. and NIBIB EB 05556 to J.C.S.) and the Robert A. Welch Foundation (I-1244 to D.R.C.). B.A.J. was also supported by the High Impact/High Risk Grants Program, UT Southwestern Medical Center, and an Institutional Research Grant from the American Cancer Society (IRG-02-196-04). We gratefully acknowledge Z. Mourelatos (Univ. Pennsylvania) for providing anti-argonaute antibody. We thank A. Bhat for technical assistance and J. Watts for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments and analyzed data. All authors except D.R.C. performed experiments. D.R.C. wrote the manuscript. The authors recognize that the contributions of J.C.S. and Y.C. would have been sufficient to merit separate publications.

Corresponding authors

Correspondence to Bethany A Janowski or David R Corey.

Ethics declarations

Competing interests

The authors have licensed intellectual property related to this work to Alnylam Pharmaceutical.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Results, Supplementary Tables 1–12 and Supplementary Figures 1–25 (PDF 16670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, X., Schwartz, J., Chu, Y. et al. Transcriptional regulation by small RNAs at sequences downstream from 3′ gene termini. Nat Chem Biol 6, 621–629 (2010). https://doi.org/10.1038/nchembio.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing