Brief Communication | Published:

Ureide catabolism in Arabidopsis thaliana and Escherichia coli

Nature Chemical Biology volume 6, pages 1921 (2010) | Download Citation

Subjects

Abstract

The availability of whole genome sequences boosts the identification of biochemical pathways conserved across species using tools of comparative genomics. A cross-organism protein association analysis allowed us to identify two enzymes, ureidoglycine aminohydrolase and ureidoglycolate amidohydrolase, that catalyze the final reactions of purine degradation in the model plant Arabidopsis thaliana. A similar pathway was found in Escherichia coli, while an alternative metabolic route via ureidoglycine transaminase can be predicted for other organisms.

  • Compound C4H6N4O3

    S-(+)-Allantoin

  • Compound C4H7N4O4-

    Allantoate

  • Compound CH4N2O

    Urea

  • Compound C3H6N3O3-

    (-)-Ureidoglycine

  • Compound C3H5N2O4-

    S-(-)-Ureidoglycolate

  • Compound C2HO3-

    Glyoxylate

  • Compound C3H3N2O4-

    Oxalurate

  • Compound C10H16N5O13P3

    Adenosine triphosphate

  • Compound C2H5NO2

    Glycine

  • Compound C5H3N4O4-

    Hydroxyisourate

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Protein Data Bank

References

  1. 1.

    et al. Infect. Immun. 72, 3783–3792 (2004).

  2. 2.

    et al. J. Exp. Bot. 57, 5–12 (2006).

  3. 3.

    & Bacteriol. Rev. 40, 403–468 (1976).

  4. 4.

    , , & Plant Physiol. 146, 418–430 (2008).

  5. 5.

    , , , & J. Bacteriol. 181, 7479–7484 (1999).

  6. 6.

    , & J. Bacteriol. 183, 3293–3302 (2001).

  7. 7.

    , & Arch. Biochem. Biophys. 136, 273–279 (1970).

  8. 8.

    , & Biochim. Biophys. Acta 198, 569–582 (1970).

  9. 9.

    , , & Plant Physiol. 125, 828–834 (2001).

  10. 10.

    , & Plant Physiol. 86, 1084–1088 (1988).

  11. 11.

    , , , & Bioinformatics 22, 1158–1165 (2006).

  12. 12.

    et al. Plant Physiol. 136, 2483–2499 (2004).

  13. 13.

    et al. Nat. Genet. 37, 501–506 (2005).

  14. 14.

    et al. Nucleic Acids Res. 35, D358–D362 (2007).

  15. 15.

    , & J. Mol. Biol. 368, 450–463 (2007).

  16. 16.

    , & Arch. Biochem. Biophys. 145, 465–469 (1971).

  17. 17.

    , , , & Nat. Chem. Biol. 2, 144–148 (2006).

Download references

Acknowledgements

The authors thank F.-Q. Cao for technical support and A. Schäfer from the Institute for Chemistry of the Freie Universität Berlin for NMR measurements. This work was financially supported by the Deutsche Forschungsgemeinschaft (WI 3411/1-1).

Author information

Affiliations

  1. Freie Universität Berlin, Institut für Biologie, Abteilung Biochemie der Pflanzen, Berlin, Germany.

    • Andrea K Werner
    • , Tina Romeis
    •  & Claus-Peter Witte

Authors

  1. Search for Andrea K Werner in:

  2. Search for Tina Romeis in:

  3. Search for Claus-Peter Witte in:

Contributions

A.K.W., experimental design and biochemical experiments; T.R., supply of the laboratory environment; C.-P.W., project planning and design and bioinformatic analysis.

Corresponding author

Correspondence to Claus-Peter Witte.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–6 and Supplementary Methods

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.265

Further reading