Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into the biogenesis, function, and regulation of ADP-ribosylation

Abstract

ADP-ribosylation—the transfer of ADP-ribose (ADPr) from NAD+ onto target molecules—is catalyzed by members of the ADP-ribosyltransferase (ART) superfamily of proteins, found in all kingdoms of life. Modification of amino acids in protein targets by ADPr regulates critical cellular pathways in eukaryotes and underlies the pathogenicity of certain bacteria. Several members of the ART superfamily are highly relevant for disease; these include the poly(ADP-ribose) polymerases (PARPs), recently shown to be important cancer targets, and the bacterial toxins diphtheria toxin and cholera toxin, long known to be responsible for the symptoms of diphtheria and cholera that result in morbidity. In this Review, we discuss the functions of amino acid ADPr modifications and the ART proteins that make them, the nature of the chemical linkage between ADPr and its targets and how this impacts function and stability, and the way that ARTs select specific amino acids in targets to modify.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the HYE and RSE ART folds.
Figure 2: Key cellular functions of ARTs in bacteria and humans.
Figure 3: Amino acid targeting in bacterial ARTs, ARTCs and PARPs.
Figure 4: Mechanisms of substrate targeting.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Aravind, L., Zhang, D., de Souza, R.F., Anand, S. & Iyer, L.M. in Endogenous ADP-Ribosylation (ed. Koch-Nolte, F.) 3–32 (Springer International Publishing, 2015).

    Google Scholar 

  2. Bazan, J.F. & Koch-Nolte, F. Sequence and structural links between distant ADP-ribosyltransferase families. Adv. Exp. Med. Biol. 419, 99–107 (1997).

    CAS  PubMed  Google Scholar 

  3. Culver, G.M. et al. An NAD derivative produced during transfer RNA splicing: ADP-ribose 1″-2″ cyclic phosphate. Science 261, 206–208 (1993).

    CAS  PubMed  Google Scholar 

  4. Spinelli, S.L., Kierzek, R., Turner, D.H. & Phizicky, E.M. Transient ADP-ribosylation of a 2′-phosphate implicated in its removal from ligated tRNA during splicing in yeast. J. Biol. Chem. 274, 2637–2644 (1999).

    CAS  PubMed  Google Scholar 

  5. Lyons, B. et al. Scabin, a novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies. J. Biol. Chem. 291, 11198–11215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Takamura-Enya, T. et al. Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc. Natl. Acad. Sci. USA 98, 12414–12419 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakano, T. et al. Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc. Natl. Acad. Sci. USA 103, 13652–13657 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jankevicius, G., Ariza, A., Ahel, M. & Ahel, I. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 64, 1109–1116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Munnur, D. & Ahel, I. Reversible mono-ADP-ribosylation of DNA breaks. FEBS J. 284, 4002–4016 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dabbs, E.R. et al. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob. Agents Chemother. 39, 1007–1009 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baysarowich, J. et al. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc. Natl. Acad. Sci. USA 105, 4886–4891 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jwa, M. & Chang, P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat. Cell Biol. 14, 1223–1230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Y. et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13, 623–629 (2011).

    CAS  PubMed  Google Scholar 

  14. DaRosa, P.A. et al. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517, 223–226 (2015).

    CAS  PubMed  Google Scholar 

  15. Wang, Z. et al. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 26, 235–240 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Zhou, Z.-D., Chan, C.H.-S., Xiao, Z.-C. & Tan, E.-K. Ringfinger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh. Migr. 5, 463–471 (2011).

    PubMed  PubMed Central  Google Scholar 

  17. Chang, P., Jacobson, M.K. & Mitchison, T.J. Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432, 645–649 (2004).

    CAS  PubMed  Google Scholar 

  18. Chang, P., Coughlin, M. & Mitchison, T.J. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol. Biol. Cell 20, 4575–4585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vyas, S. & Chang, P. New PARP targets for cancer therapy. Nat. Rev. Cancer 14, 502–509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, P., Coughlin, M. & Mitchison, T.J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat. Cell Biol. 7, 1133–1139 (2005).

    CAS  PubMed  Google Scholar 

  21. Gibson, B.A. & Kraus, W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    CAS  PubMed  Google Scholar 

  22. Ahel, I. et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451, 81–85 (2008).

    CAS  PubMed  Google Scholar 

  23. Barkauskaite, E., Jankevicius, G. & Ahel, I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58, 935–946 (2015).

    CAS  PubMed  Google Scholar 

  24. Jankevicius, G. et al. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 20, 508–514 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenthal, F. et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 20, 502–507 (2013).

    CAS  PubMed  Google Scholar 

  26. Sharifi, R. et al. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32, 1225–1237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. De Haan, L. & Hirst, T.R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol. Membr. Biol. 21, 77–92 (2004).

    CAS  PubMed  Google Scholar 

  28. Ueda, K. & Hayaishi, O. ADP-ribosylation. Annu. Rev. Biochem. 54, 73–100 (1985).

    CAS  PubMed  Google Scholar 

  29. Corda, D. & Di Girolamo, M. Functional aspects of protein mono-ADP-ribosylation. EMBO J. 22, 1953–1958 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch-Nolte, F. ed. Endogenous ADP-Ribosylation 1st edn, Vol. 384 (Springer International Publishing, 2015).

    Google Scholar 

  31. de Souza, R.F. & Aravind, L. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol. Biosyst. 8, 1661–1677 (2012).

    PubMed  Google Scholar 

  32. Rao, S.T. & Rossmann, M.G. Comparison of super-secondary structures in proteins. J. Mol. Biol. 76, 241–256 (1973).

    CAS  PubMed  Google Scholar 

  33. Vyas, S., Chesarone-Cataldo, M., Todorova, T., Huang, Y.-H. & Chang, P. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat. Commun. 4, 2240 (2013).

    PubMed  Google Scholar 

  34. Bock, F.J. & Chang, P. New directions in poly(ADP-ribose) polymerase biology. FEBS J. 283, 4017–4031 (2016).

    CAS  PubMed  Google Scholar 

  35. Hottiger, M.O., Hassa, P.O., Lüscher, B., Schüler, H. & Koch-Nolte, F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci. 35, 208–219 (2010).

    CAS  PubMed  Google Scholar 

  36. Pinto, A.F. & Schüler, H. Comparative structural analysis of the putative mono-ADP-ribosyltransferases of the ARTD/PARP family. Curr. Top. Microbiol. Immunol. 384, 153–166 (2015).

    CAS  PubMed  Google Scholar 

  37. Sun, J., Maresso, A.W., Kim, J.-J.P. & Barbieri, J.T. How bacterial ADP-ribosylating toxins recognize substrates. Nat. Struct. Mol. Biol. 11, 868–876 (2004).

    CAS  PubMed  Google Scholar 

  38. Jørgensen, R., Wang, Y., Visschedyk, D. & Merrill, A.R. The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep. 9, 802–809 (2008).

    PubMed  PubMed Central  Google Scholar 

  39. Laing, S., Unger, M., Koch-Nolte, F. & Haag, F. ADP-ribosylation of arginine. Amino Acids 41, 257–269 (2011).

    CAS  PubMed  Google Scholar 

  40. Chung, D.W. & Collier, R.J. Enzymatically active peptide from the adenosine diphosphate-ribosylating toxin of Pseudomonas aeruginosa. Infect. Immun. 16, 832–841 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Seman, M., Adriouch, S., Haag, F. & Koch-Nolte, F. Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr. Med. Chem. 11, 857–872 (2004).

    CAS  PubMed  Google Scholar 

  42. Todorova, T., Bock, F.J. & Chang, P. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer. Trends Mol. Med. 21, 373–384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwata, H. et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat. Commun. 7, 12849 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kozaki, T. et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc. Natl. Acad. Sci. USA 114, 2681–2686 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Atasheva, S., Frolova, E.I. & Frolov, I. Interferon-stimulated poly(ADP-ribose) polymerases are potent inhibitors of cellular translation and virus replication. J. Virol. 88, 2116–2130 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Leung, A.K.L. et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bock, F.J., Todorova, T.T. & Chang, P. RNA regulation by poly(ADP-ribose) polymerases. Mol. Cell 58, 959–969 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Todorova, T., Bock, F.J. & Chang, P. PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat. Commun. 5, 5362 (2014).

    CAS  PubMed  Google Scholar 

  49. Gupte, R., Liu, Z. & Kraus, W.L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gibson, B.A. et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353, 45–50 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kleine, H. et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32, 57–69 (2008).

    CAS  PubMed  Google Scholar 

  52. Vyas, S. et al. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5, 4426 (2014).

    CAS  PubMed  Google Scholar 

  53. Daniels, C.M., Ong, S.E. & Leung, A.K.L. The promise of proteomics for the study of ADP-ribosylation. Mol. Cell 58, 911–924 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibbs-Seymour, I., Fontana, P., Rack, J.G.M. & Ahel, I. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62, 432–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Altmeyer, M., Messner, S., Hassa, P.O., Fey, M. & Hottiger, M.O. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37, 3723–3738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bilan, V., Leutert, M., Nanni, P., Panse, C. & Hottiger, M.O. Combining higher-energy collision dissociation and electron-transfer/higher-energy collision dissociation fragmentation in a product-dependent manner confidently assigns proteomewide ADP-ribose acceptor sites. Anal. Chem. 89, 1523–1530 (2017).

    CAS  PubMed  Google Scholar 

  57. Bonfiglio, J.J. et al. Serine ADP-ribosylation depends on HPF1. Mol. Cell 65, 932–940.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Leidecker, O. et al. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat. Chem. Biol. 12, 998–1000 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgan, R.K. & Cohen, M.S. A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem. Biol. 10, 1778–1784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cervantes-Laurean, D., Jacobson, E.L. & Jacobson, M.K. Glycation and glycoxidation of histones by ADP-ribose. J. Biol. Chem. 271, 10461–10469 (1996).

    CAS  PubMed  Google Scholar 

  61. Oka, S., Kato, J. & Moss, J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705–713 (2006).

    CAS  PubMed  Google Scholar 

  62. Fontana, P. et al. Serine ADP-ribosylation reversal by the hydrolase ARH3. eLife 6, e28533 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Abplanalp, J. et al. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 8, 2055 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Daniels, C.M., Thirawatananond, P., Ong, S.E., Gabelli, S.B. & Leung, A.K.L. Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci. Rep. 5, 18271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Palazzo, L. et al. Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem. J. 468, 293–301 (2015).

    CAS  PubMed  Google Scholar 

  66. Palazzo, L. et al. ENPP1 processes protein ADP-ribosylation in vitro. FEBS J. 283, 3371–3388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vandekerckhove, J., Schering, B., Bärmann, M. & Aktories, K. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett. 225, 48–52 (1987).

    CAS  PubMed  Google Scholar 

  68. Lang, A.E. et al. Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327, 1139–1142 (2010).

    CAS  PubMed  Google Scholar 

  69. Tsurumura, T. et al. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc. Natl. Acad. Sci. USA 110, 4267–4272 (2013).

    CAS  PubMed  Google Scholar 

  70. Vogelsgesang, M. & Aktories, K. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Biochemistry 45, 1017–1025 (2006).

    CAS  PubMed  Google Scholar 

  71. Stevens, L.A., Levine, R.L., Gochuico, B.R. & Moss, J. ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine. Proc. Natl. Acad. Sci. USA 106, 19796–19800 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Picchianti, M. et al. NAD-dependent ADP-ribosylation of the human antimicrobial and immune-modulatory peptide LL-37 by ADP-ribosyltransferase-1. Innate Immun. 21, 314–321 (2015).

    CAS  PubMed  Google Scholar 

  73. Morrone, S., Cheng, Z., Moon, R.T., Cong, F. & Xu, W. Crystal structure of a Tankyrase-Axin complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc. Natl. Acad. Sci. USA 109, 1500–1505 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pollock, K., Ranes, M., Collins, I. & Guettler, S. Identifying and validating tankyrase binders and substrates: a candidate approach. in. Methods Mol. Biol. 1608, 445–473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y., Wang, J., Ding, M. & Yu, Y. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat. Methods 10, 981–984 (2013).

    CAS  PubMed  Google Scholar 

  76. Carter-O'Connell, I. et al. Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep. 14, 621–631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael S Cohen or Paul Chang.

Ethics declarations

Competing interests

P.C. is a founder and scientific consultant at Ribon Therapeutics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, M., Chang, P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14, 236–243 (2018). https://doi.org/10.1038/nchembio.2568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing