Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A toxic mutant huntingtin species is resistant to selective autophagy

Abstract

Protein misfolding is a common theme in neurodegenerative disorders including Huntington's disease (HD). The HD-causing mutant huntingtin protein (mHTT) has an expanded polyglutamine (polyQ) stretch that may adopt multiple conformations, and the most toxic of these is the one recognized by antibody 3B5H10. Here we show that the 3B5H10-recognized mHTT species has a slower degradation rate due to its resistance to selective autophagy in human cells and brains, revealing mechanisms of its higher toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 3B5H10-recognized mHTT species has slower degradation.
Figure 2: The difference in degradation between the 3B5H10-recognized and the MW1-recognized species is due to selective autophagy.
Figure 3: The 3B5H10-recognized mHTT species lacks K63 polyubiquitination and p62 recognition.

Similar content being viewed by others

References

  1. Gusella, J.F. & MacDonald, M.E. Nat. Rev. Neurosci. 1, 109–115 (2000).

    Article  CAS  Google Scholar 

  2. Li, S.H. & Li, X.J. Trends Genet. 20, 146–154 (2004).

    Article  Google Scholar 

  3. Shirasaki, D.I. et al. Neuron 75, 41–57 (2012).

    Article  CAS  Google Scholar 

  4. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

  5. Miller, J. et al. Nat. Chem. Biol. 7, 925–934 (2011).

    Article  CAS  Google Scholar 

  6. Peters-Libeu, C. et al. J. Mol. Biol. 421, 587–600 (2012).

    Article  CAS  Google Scholar 

  7. Owens, G.E., New, D.M., West, A.P. Jr. & Bjorkman, P.J. J. Mol. Biol. 427, 2507–2519 (2015).

    Article  CAS  Google Scholar 

  8. Klein, F.A. et al. Hum. Mol. Genet. 22, 4215–4223 (2013).

    Article  CAS  Google Scholar 

  9. Bennett, M.J. et al. Proc. Natl. Acad. Sci. USA 99, 11634–11639 (2002).

    Article  CAS  Google Scholar 

  10. Tsvetkov, A.S. et al. Nat. Chem. Biol. 9, 586–592 (2013).

    Article  CAS  Google Scholar 

  11. Wu, P. et al. Acta Pharmacol. Sin. 37, 1307–1314 (2016).

    Article  CAS  Google Scholar 

  12. Bennett, L.L., Ward, V.L. & Brockman, R.W. Biochim. Biophys. Acta 103, 478–485 (1965).

    Article  CAS  Google Scholar 

  13. Ravikumar, B., Duden, R. & Rubinsztein, D.C. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  14. Johansen, T. & Lamark, T. Autophagy 7, 279–296 (2011).

    Article  CAS  Google Scholar 

  15. Filimonenko, M. et al. Mol. Cell 38, 265–279 (2010).

    Article  CAS  Google Scholar 

  16. Pankiv, S. et al. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  Google Scholar 

  17. Kirkin, V. et al. Mol. Cell 33, 505–516 (2009).

    Article  CAS  Google Scholar 

  18. Maruyama, Y. et al. Biochem. Biophys. Res. Commun. 446, 309–315 (2014).

    Article  CAS  Google Scholar 

  19. Cui, X. et al. Sci. Rep. 4, 5601 (2014).

    Article  CAS  Google Scholar 

  20. Kirkin, V., McEwan, D.G., Novak, I. & Dikic, I. Mol. Cell 34, 259–269 (2009).

    Article  CAS  Google Scholar 

  21. Bjørkøy, G. et al. J. Cell Biol. 171, 603–614 (2005).

    Article  Google Scholar 

  22. Legleiter, J. et al. J. Biol. Chem. 284, 21647–21658 (2009).

    Article  CAS  Google Scholar 

  23. Hoop, C.L. et al. Biochemistry 53, 6653–6666 (2014).

    Article  CAS  Google Scholar 

  24. Ehrnhoefer, D.E., Sutton, L. & Hayden, M.R. Neuroscientist 17, 475–492 (2011).

    Article  CAS  Google Scholar 

  25. Atwal, R.S. et al. Nat. Chem. Biol. 7, 453–460 (2011).

    Article  CAS  Google Scholar 

  26. Yao, Y. et al. eLife 4, e05449 (2015).

    Article  Google Scholar 

  27. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  Google Scholar 

  28. Lu, B. et al. Nat. Neurosci. 16, 562–570 (2013).

    Article  CAS  Google Scholar 

  29. Weiss, A. et al. Anal. Biochem. 395, 8–15 (2009).

    Article  CAS  Google Scholar 

  30. Menalled, L.B., Sison, J.D., Dragatsis, I., Zeitlin, S. & Chesselet, M.F. J. Comp. Neurol. 465, 11–26 (2003).

    Article  CAS  Google Scholar 

  31. Sapp, E. et al. J. Biol. Chem. 287, 13487–13499 (2012).

    Article  CAS  Google Scholar 

  32. Aronin, N. et al. Neuron 15, 1193–1201 (1995).

    Article  CAS  Google Scholar 

  33. Ko, J., Ou, S. & Patterson, P.H. Brain Res. Bull. 56, 319–329 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Lu (biostatistician) for the statistical analysis, L. Ma and S. Hexige at Fudan University for sharing some of the patient fibroblast lines, K. Kegel at MGH Harvard Medical School for cDNA plasmids, E. Sapp at MGH Harvard Medical School for lysate of the human post-mortem brain tissues, and the National Natural Science Foundation of China (31422024, 91649105, 31371421, 31601105) and the National Key Research and Development Program of China (2016YFC0905100) for funding.

Author information

Authors and Affiliations

Authors

Contributions

B.L. perceived the idea, initiated the project and designed the experiments. P.W., Y.F., Y.P. and X.S. performed the CH-chase experiments. Y.F. performed all the immunoprecipitation–western experiments with the help from others for blinding. H.Y. did the cell culture, molecular cloning and protein extraction. M.D. provided essential reagents and intellectual inputs.

Corresponding author

Correspondence to Boxun Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–10 (PDF 5350 kb)

Life Sciences Reporting Summary (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Wu, P., Pan, Y. et al. A toxic mutant huntingtin species is resistant to selective autophagy. Nat Chem Biol 13, 1152–1154 (2017). https://doi.org/10.1038/nchembio.2461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing