Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FRET monitoring of a nonribosomal peptide synthetase

Abstract

Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine–thioester and phenylalanine–AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of an intramolecular FRET sensor of an A-PCP di-domain.
Figure 2: The A-PCP FRET sensor undergoes ligand-dependent conformational changes.
Figure 3: Correlation of FRET ratio with catalysis and ligand binding.
Figure 4: A-PCP FRET sensors with selectively destabilized A or T conformations.
Figure 5: Model of the catalytic A-PCP reaction cycle and its coupling to conformational states.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Arnison, P.G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marahiel, M.A., Stachelhaus, T. & Mootz, H.D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Hur, G.H., Vickery, C.R. & Burkart, M.D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29, 1074–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koglin, A. & Walsh, C.T. Structural insights into nonribosomal peptide enzymatic assembly lines. Nat. Prod. Rep. 26, 987–1000 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mootz, H.D., Schwarzer, D. & Marahiel, M.A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 3, 490–504 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Weissman, K.J. The structural biology of biosynthetic megaenzymes. Nat. Chem. Biol. 11, 660–670 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Marahiel, M.A. A structural model for multimodular NRPS assembly lines. Nat. Prod. Rep. 33, 136–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Tanovic, A., Samel, S.A., Essen, L.O. & Marahiel, M.A. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321, 659–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Drake, E.J. et al. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529, 235–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reimer, J.M., Aloise, M.N., Harrison, P.M. & Schmeing, T.M. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529, 239–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Kittilä, T., Mollo, A., Charkoudian, L.K. & Cryle, M.J. New structural data reveal the motion of carrier proteins in nonribosomal peptide synthesis. Angew. Chem. Int. Edn Engl. 55, 9834–9840 (2016).

    Article  CAS  Google Scholar 

  12. Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311, 1258–1262 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conti, E., Stachelhaus, T., Marahiel, M.A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16, 4174–4183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yonus, H. et al. Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J. Biol. Chem. 283, 32484–32491 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Gulick, A.M. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem. Biol. 4, 811–827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reger, A.S., Wu, R., Dunaway-Mariano, D. & Gulick, A.M. Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Biochemistry 47, 8016–8025 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, R., Reger, A.S., Lu, X., Gulick, A.M. & Dunaway-Mariano, D. The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Biochemistry 48, 4115–4125 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Branchini, B.R. et al. Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism. J. Am. Chem. Soc. 133, 11088–11091 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell, C.A., Shi, C., Aldrich, C.C. & Gulick, A.M. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51, 3252–3263 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Sundlov, J.A., Shi, C., Wilson, D.J., Aldrich, C.C. & Gulick, A.M. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem. Biol. 19, 188–198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Branchini, B.R., Murtiashaw, M.H., Magyar, R.A. & Anderson, S.M. The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. Biochemistry 39, 5433–5440 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Horswill, A.R. & Escalante-Semerena, J.C. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry 41, 2379–2387 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Branchini, B.R. et al. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. Biochemistry 44, 1385–1393 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, R. et al. Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. Biochemistry 47, 8026–8039 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Kochan, G., Pilka, E.S., von Delft, F., Oppermann, U. & Yue, W.W. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. J. Mol. Biol. 388, 997–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Koglin, A. et al. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312, 273–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Frueh, D.P. et al. Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454, 903–906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goodrich, A.C., Harden, B.J. & Frueh, D.P. Solution structure of a nonribosomal peptide synthetase carrier protein loaded with its substrate reveals transient, well-defined contacts. J. Am. Chem. Soc. 137, 12100–12109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dieckmann, R., Pavela-Vrancic, M., von Döhren, H. & Kleinkauf, H. Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1. J. Mol. Biol. 288, 129–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zettler, J. & Mootz, H.D. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases. FEBS J. 277, 1159–1171 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hoyer, K.M., Mahlert, C. & Marahiel, M.A. The iterative gramicidin s thioesterase catalyzes peptide ligation and cyclization. Chem. Biol. 14, 13–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stachelhaus, T. & Marahiel, M.A. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J. Biol. Chem. 270, 6163–6169 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Lambalot, R.H. et al. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem. Biol. 3, 923–936 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, X., Li, H., Alfermann, J., Mootz, H.D. & Yang, H. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases. Biochemistry 53, 7983–7989 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Finking, R. et al. Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. ChemBioChem 4, 903–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, L. & Walsh, C.T. Kinetic analysis of three activated phenylalanyl intermediates generated by the initiation module PheATE of gramicidin S synthetase. Biochemistry 40, 5329–5337 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, Y. & Bruner, S.D. Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases. ChemBioChem 8, 617–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kittilä, T., Schoppet, M. & Cryle, M.J. Online pyrophosphate assay for analyzing adenylation domains of nonribosomal peptide synthetases. ChemBioChem 17, 576–584 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Linne, U. & Marahiel, M.A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10439–10447 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Mootz, H.D. & Marahiel, M.A. Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr. Opin. Chem. Biol. 1, 543–551 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Belshaw, P.J., Walsh, C.T. & Stachelhaus, T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284, 486–489 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Albertazzi, L., Arosio, D., Marchetti, L., Ricci, F. & Beltram, F. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem. Photobiol. 85, 287–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Volkmer, A., Subramaniam, V., Birch, D.J. & Jovin, T.M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, 1999).

  46. Magde, D., Wong, R. & Seybold, P.G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kraynov, V.S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Miyawaki, A. & Tsien, R.Y. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Mann, M., Meng, C.K. & Fenn, J.B. Interpreting mass-spectra of multiply charged ions. Anal. Chem. 61, 1702–1708 (1989).

    Article  CAS  Google Scholar 

  51. Ferrige, A.G., Seddon, M.J., Jarvis, S., Skilling, J. & Aplin, R. Maximum entropy deconvolution in electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 5, 374–377 (1991).

    Article  CAS  Google Scholar 

  52. Brooks, B.R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanwell, M.D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vanommeslaeghe, K. & MacKerell, A.D. Jr. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vanommeslaeghe, K., Raman, E.P. & MacKerell, A.D. Jr. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, M.S., Feig, M., Salsbury, F.R. Jr. & Brooks, C.L. III. New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations. J. Comput. Chem. 24, 1348–1356 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Olsson, M.H., Søndergaard, C.R., Rostkowski, M. & Jensen, J.H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. & Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arpino, J.A., Rizkallah, P.J. & Jones, D.D. Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222. PLoS One 7, e47132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to C.-B. Li and S. Kawai for fruitful discussions. We thank J. Diecker for technical support with radioactive assays and FRET experiments and W. Dörner for support with MS measurements. This work was funded by the Human Frontier Science Program (RGP0031/2010 to H.D.M., H.Y. and T.K.) and the National Science Foundation (graduate research fellowship DGE-0646086 to T.E.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.A., X.S., T.K., H.Y. and H.D.M. conceived the study. J.A., X.S., F.M., H.Y. and H.D.M. planned the experiments. J.A. developed the FRET sensor and carried out FRET, gel-shift and enzyme assays. X.S. performed MS experiments and photophysical controls of the FRET dye pair. F.M. performed FRET measurements with the desulfo sensor and the AF546 control experiments. E.D. and G.V. established and carried out enzyme assays. T.E.M. performed the computational modeling. J.A., X.S., F.M., H.Y. and H.D.M. interpreted the data. J.A., X.S. and H.D.M. wrote the manuscript.

Corresponding author

Correspondence to Henning D Mootz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14 and Supplementary Tables 1–2. (PDF 1632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfermann, J., Sun, X., Mayerthaler, F. et al. FRET monitoring of a nonribosomal peptide synthetase. Nat Chem Biol 13, 1009–1015 (2017). https://doi.org/10.1038/nchembio.2435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing