Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo

This article was retracted on 19 January 2024

This article has been updated

Abstract

Escherichia coli DsbB is a transmembrane enzyme that catalyzes the reoxidation of the periplasmic oxidase DsbA by ubiquinone. Here, we sought to convert membrane-bound DsbB into a water-soluble biocatalyst by leveraging a previously described method for in vivo solubilization of integral membrane proteins (IMPs). When solubilized DsbB variants were coexpressed with an export-defective copy of DsbA in the cytoplasm of wild-type E. coli cells, artificial oxidation pathways were created that efficiently catalyzed de novo disulfide-bond formation in a range of substrate proteins, in a manner dependent on both DsbA and quinone. Hence, DsbB solubilization was achieved with preservation of both catalytic activity and substrate specificity. Moreover, given the generality of the solubilization technique, the results presented here should pave the way to unlocking the biocatalytic potential of other membrane-bound enzymes whose utility has been limited by poor stability of IMPs outside of their native lipid-bilayer context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo.
Figure 2: In vivo solubilization of DsbB with the SIMPLEx strategy.
Figure 3: Solubilized DsbB variants promote folding of alkaline phosphatase.
Figure 4: Structural characterization of solubilized DsbB by biological SAXS.
Figure 5: Proper folding of complex substrate proteins by solubilized DsbB variants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

References

  1. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wise, A., Gearing, K. & Rees, S. Target validation of G-protein coupled receptors. Drug Discov. Today 7, 235–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Rajendran, L., Knölker, H.J. & Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 9, 29–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. von Heijne, G. Membrane proteins: from sequence to structure. Annu. Rev. Biophys. Biomol. Struct. 23, 167–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Rawlings, A.E. Membrane proteins: always an insoluble problem? Biochem. Soc. Trans. 44, 790–795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loll, P.J. Membrane protein structural biology: the high throughput challenge. J. Struct. Biol. 142, 144–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Wagner, S., Bader, M.L., Drew, D. & de Gier, J.W. Rationalizing membrane protein overexpression. Trends Biotechnol. 24, 364–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Curnow, P. Membrane proteins in nanotechnology. Biochem. Soc. Trans. 37, 643–652 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Boldog, T., Grimme, S., Li, M., Sligar, S.G. & Hazelbauer, G.L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl. Acad. Sci. USA 103, 11509–11514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGregor, C.L. et al. Lipopeptide detergents designed for the structural study of membrane proteins. Nat. Biotechnol. 21, 171–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tribet, C., Audebert, R. & Popot, J.L. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. USA 93, 15047–15050 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tate, C.G. Practical considerations of membrane protein instability during purification and crystallisation. Methods Mol. Biol. 601, 187–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Slovic, A.M., Kono, H., Lear, J.D., Saven, J.G. & DeGrado, W.F. Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. USA 101, 1828–1833 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizrachi, D. et al. Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy. Nat. Commun. 6, 6826 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Gursky, O. & Atkinson, D. Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc. Natl. Acad. Sci. USA 93, 2991–2995 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Inaba, K. et al. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127, 789–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Bardwell, J.C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Jander, G., Martin, N.L. & Beckwith, J. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J. 13, 5121–5127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inaba, K. & Ito, K. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. EMBO J. 21, 2646–2654 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guilhot, C., Jander, G., Martin, N.L. & Beckwith, J. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc. Natl. Acad. Sci. USA 92, 9895–9899 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hatahet, F. & Ruddock, L.W. Topological plasticity of enzymes involved in disulfide bond formation allows catalysis in either the periplasm or the cytoplasm. J. Mol. Biol. 425, 3268–3276 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Teese, M.G. & Langosch, D. Role of GxxxG motifs in transmembrane domain interactions. Biochemistry 54, 5125–5135 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Kleiger, G., Grothe, R., Mallick, P. & Eisenberg, D. GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 41, 5990–5997 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Senes, A., Gerstein, M. & Engelman, D.M. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J. Mol. Biol. 296, 921–936 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S. et al. Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc. Natl. Acad. Sci. USA 102, 14278–14283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sone, M., Kishigami, S., Yoshihisa, T. & Ito, K. Roles of disulfide bonds in bacterial alkaline phosphatase. J. Biol. Chem. 272, 6174–6178 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Lobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bessette, P.H., Qiu, J., Bardwell, J.C., Swartz, J.R. & Georgiou, G. Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J. Bacteriol. 183, 980–988 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Y., Ke, N., Liu, S. & Li, W. Methods for structural and functional analyses of intramembrane prenyltransferases in the UbiA superfamily. Methods Enzymol. 584, 309–347 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Graewert, M.A. & Svergun, D.I. Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr. Opin. Struct. Biol. 23, 748–754 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Petoukhov, M.V. & Svergun, D.I. Applications of small-angle X-ray scattering to biomacromolecular solutions. Int. J. Biochem. Cell Biol. 45, 429–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Franke, D. & Svergun, D.I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martineau, P., Jones, P. & Winter, G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J. Mol. Biol. 280, 117–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Robinson, M.P. et al. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat. Commun. 6, 8072 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Inaba, K., Takahashi, Y.H. & Ito, K. Reactivities of quinone-free DsbB from Escherichia coli. J. Biol. Chem. 280, 33035–33044 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Bessette, P.H., Aslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96, 13703–13708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Baneyx, F. & Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22, 1399–1408 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Contreras-Martinez, L.M., Boock, J.T., Kostecki, J.S. & DeLisa, M.P. The ribosomal exit tunnel as a target for optimizing protein expression in Escherichia coli. Biotechnol. J. 7, 354–360 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berkmen, M., Boyd, D. & Beckwith, J. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J. Biol. Chem. 280, 11387–11394 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Møller, M. et al. Small angle X-ray scattering studies of mitochondrial glutaminase C reveal extended flexible regions, and link oligomeric state with enzyme activity. PLoS One 8, e74783 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  48. Schneidman-Duhovny, D., Hammel, M., Tainer, J.A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 105, 962–974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schneidman-Duhovny, D., Hammel, M., Tainer, J.A. & Sali, A. FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 44, W424–W429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Ruddock (University of Oulu) for providing plasmids used in this study. We thank C. Sevier (Cornell University) for helpful discussions regarding the manuscript. This work is based on research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the NSF and the NIH/NIGMS under NSF award DMR-1332208, in the Macromolecular Diffraction at CHESS (MacCHESS) facility, which is supported by award GM-103485 from the NIH/NIGMS. This work also made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (grant no. DMR-1120296). This work is based on work supported by NIH grants R21DA031409-01 (to M.P.D.), NSF grants CBET 1159581 and CBET 1264701 (both to M.P.D.), a Ford Foundation Predoctoral Fellowship (to M.-P.R.), and a National Science Foundation Graduate Research Fellowship (to M.-P.R.).

Author information

Authors and Affiliations

Authors

Contributions

D.M. designed research, performed all research, analyzed all data and wrote the paper. M.-P.R. performed experiments and analyzed data related to antibody expression. G.R. and N.K. performed experiments and analyzed data related to AMS alkylation, quinone-deficient cPhoA activity, and c-uPA activity. M.B. designed research and analyzed data. M.P.D. designed research, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Matthew P DeLisa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–11 (PDF 6760 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizrachi, D., Robinson, MP., Ren, G. et al. RETRACTED ARTICLE: A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo. Nat Chem Biol 13, 1022–1028 (2017). https://doi.org/10.1038/nchembio.2409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing