Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes

Abstract

Although tetracyclines are an important class of antibiotics for use in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored, despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes that have a high potential for broad dissemination. Here, we show that tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a new tetracycline and tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dose–response curve showing the effect of tetracycline on growth of Legionella strains.
Figure 2: Crystal structures of Tet(50), Tet(51), Tet(55), and Tet(56) reveal a conserved architecture, structural changes that enable substrate-loading channel accessibility, and two conformations of the FAD cofactor.
Figure 3: Tet(50)–chlortetracycline structure reveals an unexpected mode of binding that drives substrate-loading channel closure and FAD conversion.
Figure 4: Chlortetracycline is degraded by tetracycline destructases despite the unusual binding mode.
Figure 5: Anhydrotetracycline binds to the active site of Tet(50), trapping FAD in the unproductive OUT conformation.
Figure 6: Anhydrotetracycline prevents enzymatic tetracycline degradation, functionally rescuing tetracycline antibiotic activity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Knapp, C.W., Dolfing, J., Ehlert, P.A. & Graham, D.W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Kinch, M.S., Patridge, E., Plummer, M. & Hoyer, D. An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov. Today 19, 1283–1287 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375–382 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Allen, H.K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Berendonk, T.U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Benveniste, R. & Davies, J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA 70, 2276–2280 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D'Costa, V.M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Forsberg, K.J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forsberg, K.J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yong, D. et al. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53, 5046–5054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Y.Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  PubMed  CAS  Google Scholar 

  12. Poirel, L., Rodriguez-Martinez, J.M., Mammeri, H., Liard, A. & Nordmann, P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49, 3523–3525 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thaker, M., Spanogiannopoulos, P. & Wright, G.D. The tetracycline resistome. Cell. Mol. Life Sci. 67, 419–431 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. State of the World's Antibiotics. 2015. (Center for Disease Dynamics, Economics & Policy, Washington, DC, USA, 2015).

  15. Kasbekar, N. Tigecycline: a new glycylcycline antimicrobial agent. Am. J. Health Syst. Pharm. 63, 1235–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Sutcliffe, J.A., O'Brien, W., Fyfe, C. & Grossman, T.H. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob. Agents Chemother. 57, 5548–5558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macone, A.B. et al. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob. Agents Chemother. 58, 1127–1135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, B.H. & Levy, S.B. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux. Antimicrob. Agents Chemother. 32, 1797–1800 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Speer, B.S. & Salyers, A.A. Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli. J. Bacteriol. 170, 1423–1429 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whittle, G., Hund, B.D., Shoemaker, N.B. & Salyers, A.A. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl. Environ. Microbiol. 67, 3488–3495 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nonaka, L. & Suzuki, S. New Mg2+-dependent oxytetracycline resistance determinant tet 34 in Vibrio isolates from marine fish intestinal contents. Antimicrob. Agents Chemother. 46, 1550–1552 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diaz-Torres, M.L. et al. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob. Agents Chemother. 47, 1430–1432 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh, S., Sadowsky, M.J., Roberts, M.C., Gralnick, J.A. & LaPara, T.M. Sphingobacterium sp. strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline. J. Appl. Microbiol. 106, 1336–1342 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, W. et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279, 52346–52352 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, I.F., Hughes, D.W. & Wright, G.D. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry 44, 11829–11835 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Volkers, G., Palm, G.J., Weiss, M.S., Wright, G.D. & Hinrichs, W. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 585, 1061–1066 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Forsberg, K.J., Patel, S., Wencewicz, T.A. & Dantas, G. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem. Biol. 22, 888–897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drawz, S.M., Papp-Wallace, K.M. & Bonomo, R.A. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother. 58, 1835–1846 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hornak, V., Okur, A., Rizzo, R.C. & Simmerling, C. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. J. Am. Chem. Soc. 128, 2812–2813 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pesnot, T., Jørgensen, R., Palcic, M.M. & Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 6, 321–323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cazalet, C. et al. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet. 6, e1000851 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Whiley, H. & Bentham, R. Legionella longbeachae and legionellosis. Emerg. Infect. Dis. 17, 579–583 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ballou, D.P., Entsch, B. & Cole, L.J. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem. Biophys. Res. Commun. 338, 590–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. van Berkel, W.J., Kamerbeek, N.M. & Fraaije, M.W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124, 670–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Gatti, D.L. et al. The mobile flavin of 4-OH benzoate hydroxylase. Science 266, 110–114 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Massey, V. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994).

    CAS  PubMed  Google Scholar 

  38. Volkers, G. et al. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr. D Biol. Crystallogr. 69, 1758–1767 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, L.K. et al. The structure of the antibiotic deactivating, N-hydroxylating rifampicin monooxygenase. J. Biol. Chem. 291, 21553–21562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gibson, M., Nur-e-alam, M., Lipata, F., Oliveira, M.A. & Rohr, J. Characterization of kinetics and products of the Baeyer–Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug mithramycin from Streptomyces argillaceus. J. Am. Chem. Soc. 127, 17594–17595 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, P., Bashiri, G., Gao, X., Sawaya, M.R. & Tang, Y. Uncovering the enzymes that catalyze the final steps in oxytetracycline biosynthesis. J. Am. Chem. Soc. 135, 7138–7141 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Yuen, P.H. & Sokoloski, T.D. Kinetics of concomitant degradation of tetracycline to epitetracycline, anhydrotetracycline, and epianhydrotetracycline in acid phosphate solution. J. Pharm. Sci. 66, 1648–1650 (1977).

    Article  CAS  PubMed  Google Scholar 

  43. Palmer, A.C., Angelino, E. & Kishony, R. Chemical decay of an antibiotic inverts selection for resistance. Nat. Chem. Biol. 6, 105–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, F. & Myers, A.G. Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics. Curr. Opin. Chem. Biol. 32, 48–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Lienhart, W.D., Gudipati, V. & Macheroux, P. The human flavoproteome. Arch. Biochem. Biophys. 535, 150–162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leski, T.A. et al. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int. J. Antimicrob. Agents 42, 83–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Deng, M. et al. Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob. Agents Chemother. 58, 297–303 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boucher, H.W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    Article  PubMed  Google Scholar 

  49. Walsh, C.T. & Wencewicz, T.A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Merriam, J.J., Mathur, R., Maxfield-Boumil, R. & Isberg, R.R. Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect. Immun. 65, 2497–2501 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Feeley, J.C. et al. Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J. Clin. Microbiol. 10, 437–441 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Berger, K.H. & Isberg, R.R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Sexton, J.A. et al. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J. Bacteriol. 186, 1658–1666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  59. CLSI. Methods for Dilution Antimicrobial Susceptibility Testing for Bacteria That Grow Aerobically; Approved Standard–Tenth Edition. Vol. M07–A10 (Clinical and Laboratory Standards Institute, 2015).

  60. Berenbaum, M.C. A method for testing for synergy with any number of agents. J. Infect. Dis. 137, 122–130 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Nix and ALS beamline 4.2.2 (contract DE-AC02-05CH11231) for assistance with X-ray data collection and A. Durairaj of the Proteomics & Mass Spectrometry Facility at the Danforth Plant Science Center for assistance with HR–MS/MS experiments. This work was supported by an award to N.H.T., G.D., and T.A.W. from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI123394). A.J.G. is supported by the National Institute of General Medical Sciences Cell and Molecular Biology Training Grant (T32 GM007067). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

J.P. designed and performed crystallographic experiments and X-ray structure determination, analyzed data, and wrote the paper; A.J.G. designed and performed in vitro and microbiological experiments, analyzed data, and wrote the paper; M.R.R. and C.T.S. performed in vitro experiments; J.L.E. performed crystallographic experiments; J.P.V. performed Legionella experiments; T.A.W., G.D., and N.H.T. designed experiments, analyzed data, and wrote the manuscript.

Corresponding authors

Correspondence to Timothy A Wencewicz, Gautam Dantas or Niraj H Tolia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–5 and Supplementary Figures 1–10 (PDF 2707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Gasparrini, A., Reck, M. et al. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat Chem Biol 13, 730–736 (2017). https://doi.org/10.1038/nchembio.2376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2376

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology