Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved threonine prevents self-intoxication of enoyl-thioester reductases

Abstract

Enzymes are highly specific biocatalysts, yet they can promote unwanted side reactions. Here we investigated the factors that direct catalysis in the enoyl-thioester reductase Etr1p. We show that a single conserved threonine is essential to suppress the formation of a side product that would otherwise act as a high-affinity inhibitor of the enzyme. Substitution of this threonine with isosteric valine increases side-product formation by more than six orders of magnitude, while decreasing turnover frequency by only one order of magnitude. Our results show that the promotion of wanted reactions and the suppression of unwanted side reactions operate independently at the active site of Etr1p, and that the active suppression of side reactions is highly conserved in the family of medium-chain dehydrogenases/reductases (MDRs). Our discovery emphasizes the fact that the active destabilization of competing transition states is an important factor during catalysis that has implications for the understanding and the de novo design of enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction schemes of wild-type Etr1p and variants, and their effect on a hypothetical catalytic landscape.
Figure 2: Detailed characterization of the reactions catalyzed by wild-type Etr1p and variants.
Figure 3: Crystal structures of wild-type Etr1p and the T175V variant.
Figure 4: Cross-inhibition between wild-type Etr1p and Ccr T195V.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Khersonsky, O. & Tawfik, D.S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, X.G., Long, S.P. & Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Browne, C.A. et al. Studies of the histidine residues of triose phosphate isomerase by proton magnetic resonance and x-ray crystallography. J. Mol. Biol. 100, 319–343 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Richard, J.P. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance. Biochemistry 30, 4581–4585 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Iyengar, R. & Rose, I.A. Concentration of activated intermediates of the fructose-1,6-bisphosphate aldolase and triosephosphate isomerase reactions. Biochemistry 20, 1223–1229 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Major, D.T., Freud, Y. & Weitman, M. Catalytic control in terpenoid cyclases: multiscale modeling of thermodynamic, kinetic, and dynamic effects. Curr. Opin. Chem. Biol. 21, 25–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Retey, J. Enzymatic reaction selectivity by negative catalysis or how do enzymes deal with highly reactive intermediates? Angew. Chem. Int. Edn. Engl. 29, 355–361 (1990).

    Article  Google Scholar 

  8. Bar-Even, A., Milo, R., Noor, E. & Tawfik, D.S. The moderately efficient enzyme: futile encounters and enzyme floppiness. Biochemistry 54, 4969–4977 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Rosenthal, R.G. et al. Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes. Nat. Chem. Biol. 10, 50–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Saraste, M. Oxidative phosphorylation at the fin de siècle. Science 283, 1488–1493 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Harwood, J.L. Fatty-acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 101–138 (1988).

    Article  CAS  Google Scholar 

  12. Quémard, A. et al. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34, 8235–8241 (1995).

    Article  PubMed  Google Scholar 

  13. Stewart, M.J., Parikh, S., Xiao, G., Tonge, P.J. & Kisker, C. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J. Mol. Biol. 290, 859–865 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Mansell, D.J. et al. Biocatalytic asymmetric alkene reduction: crystal structure and characterization of a double bond reductase from Nicotiana tabacum. ACS Catal. 3, 370–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenthal, R.G. et al. The use of ene adducts to study and engineer enoyl-thioester reductases. Nat. Chem. Biol. 11, 398–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Airenne, T.T. et al. Structure-function analysis of enoyl thioester reductase involved in mitochondrial maintenance. J. Mol. Biol. 327, 47–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Torkko, J.M. et al. Candida tropicalis expresses two mitochondrial 2-enoyl thioester reductases that are able to form both homodimers and heterodimers. J. Biol. Chem. 278, 41213–41220 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Miwa, G.T., Garland, W.A., Hodshon, B.J., Lu, A.Y. & Northrop, D.B. Kinetic isotope effects in cytochrome P-450-catalyzed oxidation reactions. Intermolecular and intramolecular deuterium isotope effects during the N-demethylation of N,N-dimethylphentermine. J. Biol. Chem. 255, 6049–6054 (1980).

    CAS  PubMed  Google Scholar 

  20. Khare, D. et al. Structural basis for cyclopropanation by a unique enoyl-acyl carrier protein reductase. Structure 23, 2213–2223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almarsson, O. & Bruice, T.C. Evaluation of the factors influencing reactivity and stereospecificity in NAD(P)H dependent dehydrogenase enzymes. J. Am. Chem. Soc. 115, 2125–2138 (1993).

    Article  CAS  Google Scholar 

  22. Burgner, J.W. II & Ray, W.J. Jr. The lactate dehydrogenase catalyzed pyruvate adduct reaction: simultaneous general acid-base catalysis involving an enzyme and an external catalyst. Biochemistry 23, 3626–3635 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Benach, J., Atrian, S., Gonzàlez-Duarte, R. & Ladenstein, R. The catalytic reaction and inhibition mechanism of Drosophila alcohol dehydrogenase: observation of an enzyme-bound NAD-ketone adduct at 1.4 Å resolution by X-ray crystallography. J. Mol. Biol. 289, 335–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Bull, H.G. et al. Mechanism-based inhibition of human steroid 5 α-reductase by finasteride: enzyme-catalyzed formation of NADP-dihydrofinasteride, a potent bisubstrate analog inhibitor. J. Am. Chem. Soc. 118, 2359–2365 (1996).

    Article  CAS  Google Scholar 

  25. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Kwan, D.H. & Leadlay, P.F. Mutagenesis of a modular polyketide synthase enoylreductase domain reveals insights into catalysis and stereospecificity. ACS Chem. Biol. 5, 829–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Quade, N., Huo, L., Rachid, S., Heinz, D.W. & Müller, R. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat. Chem. Biol. 8, 117–124 (2011).

    Article  PubMed  Google Scholar 

  28. Erb, T.J., Brecht, V., Fuchs, G., Müller, M. & Alber, B.E. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc. Natl. Acad. Sci. USA 106, 8871–8876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ames, B.D. et al. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis. Proc. Natl. Acad. Sci. USA 109, 11144–11149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erb, T.J. et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc. Natl. Acad. Sci. USA 104, 10631–10636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlasie, M.D. & Banerjee, R. When a spectator turns killer: suicidal electron transfer from cobalamin in methylmalonyl-CoA mutase. Biochemistry 43, 8410–8417 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Toney, M.D. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochim. Biophys. Acta 1814, 1407–1418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toney, M.D. Reaction specificity in pyridoxal phosphate enzymes. Arch. Biochem. Biophys. 433, 279–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Ghanem, M., Murkin, A.S. & Schramm, V.L. Ribocation transition state capture and rebound in human purine nucleoside phosphorylase. Chem. Biol. 16, 971–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilkins, M.R.C. et al. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552 (1999).

    CAS  PubMed  Google Scholar 

  36. Dawson, R.M.C. Data for Biochemical Research (Clarendon Press, 1986).

  37. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Afonine, P.V. et al. phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics. J. Appl. Crystallogr. 43, 669–676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  41. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Lill and U. Mühlenhoff at the Core Facility for Protein Spectroscopy and Protein Biochemistry at the University of Marburg for providing access to the stopped-flow instrument, and N.S. Cortina for analysis of high-resolution mass spectrometric analyses. This work was supported by the Max Planck Society and the European Research Council (ERC 637675 “SYBORG” to T.J.E.).

Author information

Authors and Affiliations

Authors

Contributions

R.G.R., B.V. and T.J.E. conceived and designed all experiments, with the exception of crystallography experiments, which they designed with T.W. and S.S. Enzyme kinetic assays and stopped-flow measurements were performed by R.G.R. and B.V. MS experiments were carried out and analyzed by B.V. and R.G.R. Crystallography experiments were carried out by B.V. and T.W. T.W. and B.V. collected the diffraction data, and T.W. interpreted the results. R.G.R., B.V. and T.J.E. wrote the paper.

Corresponding author

Correspondence to Tobias J Erb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–10 (PDF 1267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenthal, R., Vögeli, B., Wagner, T. et al. A conserved threonine prevents self-intoxication of enoyl-thioester reductases. Nat Chem Biol 13, 745–749 (2017). https://doi.org/10.1038/nchembio.2375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2375

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing