Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome

Abstract

The unwinding and priming activities of the bacteriophage T4 primosome, which consists of a hexameric helicase (gp41) translocating 5′ to 3′ and an oligomeric primase (gp61) synthesizing primers 5′ to 3′, have been investigated on DNA hairpins manipulated by a magnetic trap. We find that the T4 primosome continuously unwinds the DNA duplex while allowing for primer synthesis through a primosome disassembly mechanism or a new DNA looping mechanism. A fused gp61-gp41 primosome unwinds and primes DNA exclusively via the DNA looping mechanism. Other proteins within the replisome control the partitioning of these two mechanisms by disfavoring primosome disassembly, thereby increasing primase processivity. In contrast to T4, priming in bacteriophage T7 and Escherichia coli involves discrete pausing of the primosome and dissociation of the primase from the helicase, respectively. Thus nature appears to use several strategies to couple the disparate helicase and primase activities within primosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of primosome behavior during primer synthesis.
Figure 2: Primer synthesis by primosome depends on rNTP concentration.
Figure 3: Primosome disassembly model for primer synthesis.
Figure 4: DNA looping mechanism for primer synthesis.
Figure 5: Polymerase accessory proteins increase DNA looping.
Figure 6: Model for the primosome activity and initiation of lagging strand DNA synthesis.

Similar content being viewed by others

References

  1. Benkovic, S.J., Valentine, A.M. & Salinas, F. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70, 181–208 (2001).

    Article  CAS  Google Scholar 

  2. Morris, C.F., Sinha, N.K. & Alberts, B.M. Reconstruction of bacteriophage T4 DNA replication apparatus from purified components: rolling circle replication following de novo chain initiation on a single-stranded circular DNA template. Proc. Natl. Acad. Sci. USA 72, 4800–4804 (1975).

    Article  CAS  Google Scholar 

  3. Huang, C.C., Hearst, J.E. & Alberts, B.M. Two types of replication proteins increase the rate at which T4 DNA polymerase traverses the helical regions in a single-stranded DNA template. J. Biol. Chem. 256, 4087–4094 (1981).

    CAS  PubMed  Google Scholar 

  4. Kaboord, B.F. & Benkovic, S.J. Accessory proteins function as matchmakers in the assembly of the T4 DNA polymerase holoenzyme. Curr. Biol. 5, 149–157 (1995).

    Article  CAS  Google Scholar 

  5. Liu, C.C. & Alberts, B.M. Characterization of the DNA-dependent GTPase activity of T4 gene 41 protein, an essential component of the T4 bacteriophage DNA replication apparatus. J. Biol. Chem. 256, 2813–2820 (1981).

    CAS  PubMed  Google Scholar 

  6. Hinton, D.M. & Nossal, N.G. Bacteriophage T4 DNA primase-helicase. Characterization of oligomer synthesis by T4 61 protein alone and in conjunction with T4 41 protein. J. Biol. Chem. 262, 10873–10878 (1987).

    CAS  PubMed  Google Scholar 

  7. Yang, J., Xi, J., Zhuang, Z. & Benkovic, S.J. The oligomeric T4 primase is the functional form during replication. J. Biol. Chem. 280, 25416–25423 (2005).

    Article  CAS  Google Scholar 

  8. Richardson, R.W. & Nossal, N.G. Trypsin cleavage in the COOH terminus of the bacteriophage T4 gene 41 DNA helicase alters the primase-helicase activities of the T4 replication complex in vitro. J. Biol. Chem. 264, 4732–4739 (1989).

    CAS  PubMed  Google Scholar 

  9. Jing, D., Beechem, J.M. & Patton, W.F. The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes. Electrophoresis 25, 2439–2446 (2004).

    Article  CAS  Google Scholar 

  10. Jing, D.H., Dong, F., Latham, G.J. & von Hippel, P.H. Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation. J. Biol. Chem. 274, 27287–27298 (1999).

    Article  CAS  Google Scholar 

  11. Zhang, Z. et al. Assembly of the bacteriophage T4 primosome: single-molecule and ensemble studies. Proc. Natl. Acad. Sci. USA 102, 3254–3259 (2005).

    Article  CAS  Google Scholar 

  12. Richardson, R.W. & Nossal, N.G. Characterization of the bacteriophage T4 gene 41 DNA helicase. J. Biol. Chem. 264, 4725–4731 (1989).

    CAS  PubMed  Google Scholar 

  13. Cha, T.A. & Alberts, B.M. Effects of the bacteriophage T4 gene 41 and gene 32 proteins on RNA primer synthesis: coupling of leading- and lagging-strand DNA synthesis at a replication fork. Biochemistry 29, 1791–1798 (1990).

    Article  CAS  Google Scholar 

  14. Chastain, P.D. II, Makhov, A.M., Nossal, N.G. & Griffith, J. Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage t4 proteins. J. Biol. Chem. 278, 21276–21285 (2003).

    Article  CAS  Google Scholar 

  15. Barry, J. & Alberts, B. Purification and characterization of bacteriophage T4 gene 59 protein. A DNA helicase assembly protein involved in DNA replication. J. Biol. Chem. 269, 33049–33062 (1994).

    CAS  PubMed  Google Scholar 

  16. Raney, K.D., Carver, T.E. & Benkovic, S.J. Stoichiometry and DNA unwinding by the bacteriophage T4 41:59 helicase. J. Biol. Chem. 271, 14074–14081 (1996).

    Article  CAS  Google Scholar 

  17. Lee, J.B. et al. DNA primase acts as a molecular brake in DNA replication. Nature 439, 621–624 (2006).

    Article  CAS  Google Scholar 

  18. Yuzhakov, A., Kelman, Z. & O'Donnell, M. Trading places on DNA–a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96, 153–163 (1999).

    Article  CAS  Google Scholar 

  19. Trakselis, M.A., Roccasecca, R.M., Yang, J., Valentine, A.M. & Benkovic, S.J. Dissociative properties of the proteins within the bacteriophage T4 replisome. J. Biol. Chem. 278, 49839–49849 (2003).

    Article  CAS  Google Scholar 

  20. Nelson, S.W., Kumar, R. & Benkovic, S.J. RNA primer handoff in bacteriophage T4 DNA replication: the role of single-stranded DNA binding protein and polymerase accessory proteins. J. Biol. Chem. 283, 22838–22846 (2008).

    Article  CAS  Google Scholar 

  21. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  Google Scholar 

  22. Lionnet, T., Spiering, M.M., Benkovic, S.J., Bensimon, D. & Croquette, V. Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc. Natl. Acad. Sci. USA 104, 19790–19795 (2007).

    Article  CAS  Google Scholar 

  23. Cha, T.A. & Alberts, B.M. Studies of the DNA helicase-RNA primase unit from bacteriophage T4. A trinucleotide sequence on the DNA template starts RNA primer synthesis. J. Biol. Chem. 261, 7001–7010 (1986).

    CAS  PubMed  Google Scholar 

  24. Werner, R. Distribution of growing points in DNA of bacteriophage T4. J. Mol. Biol. 33, 679–692 (1968).

    Article  CAS  Google Scholar 

  25. Valentine, A.M., Ishmael, F.T., Shier, V.K. & Benkovic, S.J. A zinc ribbon protein in DNA replication: primer synthesis and macromolecular interactions by the bacteriophage T4 primase. Biochemistry 40, 15074–15085 (2001).

    Article  CAS  Google Scholar 

  26. Tanner, N.A. et al. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat. Struct. Mol. Biol. 15, 170–176 (2008).

    Article  CAS  Google Scholar 

  27. Yang, J., Nelson, S.W. & Benkovic, S.J. The control mechanism for lagging strand polymerase recycling during bacteriophage T4 DNA replication. Mol. Cell 21, 153–164 (2006).

    Article  CAS  Google Scholar 

  28. Khopde, S., Biswas, E.E. & Biswas, S.B. Affinity and sequence specificity of DNA binding and site selection for primer synthesis by Escherichia coli primase. Biochemistry 41, 14820–14830 (2002).

    Article  CAS  Google Scholar 

  29. VanLoock, M.S., Chen, Y.J., Yu, X., Patel, S.S. & Egelman, E.H. The primase active site is on the outside of the hexameric bacteriophage T7 gene 4 helicase-primase ring. J. Mol. Biol. 311, 951–956 (2001).

    Article  CAS  Google Scholar 

  30. Ishmael, F.T., Alley, S.C. & Benkovic, S.J. Assembly of the bacteriophage T4 helicase: architecture and stoichiometry of the gp41-gp59 complex. J. Biol. Chem. 277, 20555–20562 (2002).

    Article  CAS  Google Scholar 

  31. Nossal, N.G. DNA replication with bacteriophage T4 proteins. Purification of the proteins encoded by T4 genes 41, 45, 44, and 62 using a complementation assay. J. Biol. Chem. 254, 6026–6031 (1979).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Lionnet for initial discussions and D. Bensimon for critical reading of the manuscript. This work was supported by a Human Frontier Science Program grant (to V.C. and S.J.B.), a BioNanoSwitch CEE grant (to V.C.) and US National Institutes of Health grant GM013306 (to S.J.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.M. contributed to experimental design, performed single-molecule experiments and wrote the manuscript. M.M.S. contributed to experimental design, prepared the DNA substrates and proteins, performed bulk assays and wrote the manuscript. Z.Z. constructed the fusion protein and performed bulk assays. S.J.B. and V.C. wrote the manuscript, and V.C. built the magnetic tweezers.

Corresponding authors

Correspondence to Stephen J Benkovic or Vincent Croquette.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 1997 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manosas, M., Spiering, M., Zhuang, Z. et al. Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome. Nat Chem Biol 5, 904–912 (2009). https://doi.org/10.1038/nchembio.236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing