Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis


Hydrogenases are highly active enzymes for hydrogen production and oxidation. [NiFeSe] hydrogenases, in which selenocysteine is a ligand to the active site Ni, have high catalytic activity and a bias for H2 production. In contrast to [NiFe] hydrogenases, they display reduced H2 inhibition and are rapidly reactivated after contact with oxygen. Here we report an expression system for production of recombinant [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough and study of a selenocysteine-to-cysteine variant (Sec489Cys) in which, for the first time, a [NiFeSe] hydrogenase was converted to a [NiFe] type. This modification led to severely reduced Ni incorporation, revealing the direct involvement of this residue in the maturation process. The Ni-depleted protein could be partly reconstituted to generate an enzyme showing much lower activity and inactive states characteristic of [NiFe] hydrogenases. The Ni-Sec489Cys variant shows that selenium has a crucial role in protection against oxidative damage and the high catalytic activities of the [NiFeSe] hydrogenases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The 3D structure of D. vulgaris [NiFeSe] hydrogenase.
Figure 2: The active site and its surroundings in the crystal structure of Sec489Cys-Ox.
Figure 3: The active site and its surroundings in the crystal structure of the anaerobically purified and crystallized Ni-Sec489Cys hydrogenase.
Figure 4: Spectroscopic characterization of the Ni-Sec489Cys variant versus the r[NiFeSe] hydrogenase.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank


  1. 1

    Vincent, K.A., Parkin, A. & Armstrong, F.A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 107, 4366–4413 (2007).

    CAS  PubMed  Google Scholar 

  2. 2

    King, P.W. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. Biochim. Biophys. Acta 1827, 949–957 (2013).

    CAS  PubMed  Google Scholar 

  3. 3

    Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Simmons, T.R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Mimicking hydrogenases: From biomimetics to artificial enzymes. Coord. Chem. Rev. 270–271, 127–150 (2014).

    Google Scholar 

  5. 5

    Friedrich, B., Fritsch, J. & Lenz, O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr. Opin. Biotechnol. 22, 358–364 (2011).

    CAS  PubMed  Google Scholar 

  6. 6

    Wakerley, D.W. & Reisner, E. Oxygen-tolerant proton reduction catalysis: much O2 about nothing? Energy Environ. Sci. 8, 2283–2295 (2015).

    CAS  Google Scholar 

  7. 7

    Brown, K.A., Wilker, M.B., Boehm, M., Dukovic, G. & King, P.W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134, 5627–5636 (2012).

    CAS  PubMed  Google Scholar 

  8. 8

    Hambourger, M. et al. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130, 2015–2022 (2008).

    CAS  PubMed  Google Scholar 

  9. 9

    De Lacey, A.L., Fernandez, V.M., Rousset, M. & Cammack, R. Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem. Rev. 107, 4304–4330 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Fritsch, J., Lenz, O. & Friedrich, B. Structure, function and biosynthesis of O-tolerant hydrogenases. Nat. Rev. Microbiol. 11, 106–114 (2013).

    CAS  Google Scholar 

  11. 11

    Baltazar, C.S.A. et al. Nickel–iron–selenium hydrogenases—an overview. Int. J. Inorg. Chem. 2011, 948–962 (2011).

    Google Scholar 

  12. 12

    Wombwell, C., Caputo, C.A. & Reisner, E. [NiFeSe]-hydrogenase chemistry. Acc. Chem. Res. 48, 2858–2865 (2015).

    CAS  PubMed  Google Scholar 

  13. 13

    Valente, F.M.A. et al. Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J. Biol. Inorg. Chem. 10, 667–682 (2005).

    CAS  PubMed  Google Scholar 

  14. 14

    Rüdiger, O. et al. Enzymatic anodes for hydrogen fuel cells based on covalent attachment of Ni-Fe hydrogenases and direct electron transfer to SAM-modified gold electrodes. Electroanalysis 22, 776–783 (2010).

    Google Scholar 

  15. 15

    Riethausen, J., Rüdiger, O., Gärtner, W., Lubitz, W. & Shafaat, H.S. Spectroscopic and electrochemical characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: reversible redox behavior and interactions between electron transfer centers. ChemBioChem 14, 1714–1719 (2013).

    CAS  PubMed  Google Scholar 

  16. 16

    Parkin, A., Goldet, G., Cavazza, C., Fontecilla-Camps, J.C. & Armstrong, F.A. The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J. Am. Chem. Soc. 130, 13410–13416 (2008).

    CAS  PubMed  Google Scholar 

  17. 17

    Reisner, E., Fontecilla-Camps, J.C. & Armstrong, F.A. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. (Camb.) 5, 550–552 (2009).

    Google Scholar 

  18. 18

    Teixeira, M. et al. Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties. Eur. J. Biochem. 167, 47–58 (1987).

    CAS  PubMed  Google Scholar 

  19. 19

    De Lacey, A.L., Gutiérrez-Sánchez, C., Fernández, V.M., Pacheco, I. & Pereira, I.A.C. FTIR spectroelectrochemical characterization of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough. J. Biol. Inorg. Chem. 13, 1315–1320 (2008).

    CAS  PubMed  Google Scholar 

  20. 20

    Marques, M.C., Coelho, R., De Lacey, A.L., Pereira, I.A. & Matias, P.M. The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, “as-isolated” state. J. Mol. Biol. 396, 893–907 (2010).

    CAS  PubMed  Google Scholar 

  21. 21

    Ceccaldi, P., Marques, M.C., Fourmond, V., Pereira, I.C. & Léger, C. Oxidative inactivation of NiFeSe hydrogenase. Chem. Commun. (Camb.) 51, 14223–14226 (2015).

    CAS  Google Scholar 

  22. 22

    Reisner, E., Powell, D.J., Cavazza, C., Fontecilla-Camps, J.C. & Armstrong, F.A. Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. J. Am. Chem. Soc. 131, 18457–18466 (2009).

    CAS  PubMed  Google Scholar 

  23. 23

    Caputo, C.A. et al. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem. Int. Ed. Engl. 53, 11538–11542 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Sakai, T., Mersch, D. & Reisner, E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator-free system under high levels of oxygen. Angew. Chem. Int. Ed. Engl. 52, 12313–12316 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Caputo, C.A., Wang, L.D., Beranek, R. & Reisner, E. Carbon nitride-TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production. Chem. Sci. 6, 5690–5694 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    CAS  PubMed  Google Scholar 

  27. 27

    Gutiérrez-Sanz, Ó. et al. H2-fueled ATP synthesis on an electrode: mimicking cellular respiration. Angew. Chem. Int. Ed. Engl. 55, 6216–6220 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Berghöfer, Y., Agha-Amiri, K. & Klein, A. Selenium is involved in the negative regulation of the expression of selenium-free [NiFe] hydrogenases in Methanococcus voltae. Mol. Gen. Genet. 242, 369–373 (1994).

    PubMed  Google Scholar 

  29. 29

    Valente, F.M. et al. Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 188, 3228–3235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hatfield, D.L., Tsuji, P.A., Carlson, B.A. & Gladyshev, V.N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39, 112–120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Reich, H.J. & Hondal, R.J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

    CAS  PubMed  Google Scholar 

  32. 32

    Hondal, R.J., Marino, S.M. & Gladyshev, V.N. Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid. Redox Signal. 18, 1675–1689 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Hondal, R.J. & Ruggles, E.L. Differing views of the role of selenium in thioredoxin reductase. Amino Acids 41, 73–89 (2011).

    CAS  PubMed  Google Scholar 

  34. 34

    Snider, G.W., Ruggles, E., Khan, N. & Hondal, R.J. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. Biochemistry 52, 5472–5481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Reddie, K.G. & Carroll, K.S. Expanding the functional diversity of proteins through cysteine oxidation. Curr. Opin. Chem. Biol. 12, 746–754 (2008).

    CAS  Google Scholar 

  36. 36

    Valente, F.M.A. et al. The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is a bacterial lipoprotein lacking a typical lipoprotein signal peptide. FEBS Lett. 581, 3341–3344 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Marques, M.C., Coelho, R., Pereira, I.A.C. & Matias, P.M. Redox state-dependent changes in the crystal structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Int. J. Hydrogen Energy 38, 8664–8682 (2013).

    CAS  Google Scholar 

  38. 38

    Garcin, E. et al. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7, 557–566 (1999).

    CAS  PubMed  Google Scholar 

  39. 39

    Volbeda, A. et al. Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase. Chem. Commun. (Camb.) 49, 7061–7063 (2013).

    CAS  Google Scholar 

  40. 40

    Dementin, S. et al. A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase. J. Biol. Chem. 279, 10508–10513 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Baltazar, C.S.A., Teixeira, V.H. & Soares, C.M. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach. J. Biol. Inorg. Chem. 17, 543–555 (2012).

    CAS  PubMed  Google Scholar 

  42. 42

    Lacasse, M.J. & Zamble, D.B. [NiFe]-hydrogenase maturation. Biochemistry 55, 1689–1701 (2016).

    CAS  PubMed  Google Scholar 

  43. 43

    Watanabe, S. et al. Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Proc. Natl. Acad. Sci. USA 112, 7701–7706 (2015).

    CAS  PubMed  Google Scholar 

  44. 44

    Gutiérrez-Sanz, O. et al. Influence of the protein structure surrounding the active site on the catalytic activity of [NiFeSe] hydrogenases. J. Biol. Inorg. Chem. 18, 419–427 (2013).

    PubMed  Google Scholar 

  45. 45

    Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.A. & Böck, A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331, 723–725 (1988).

    CAS  PubMed  Google Scholar 

  46. 46

    Zhang, Y., Romero, H., Salinas, G. & Gladyshev, V.N. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol. 7, R94 (2006).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571–574 (2015).

    Google Scholar 

  48. 48

    Keller, K.L., Wall, J.D. & Chhabra, S. Methods for engineering sulfate reducing bacteria of the genus Desulfovibrio. Methods Enzymol. 497, 503–517 (2011).

    CAS  PubMed  Google Scholar 

  49. 49

    Li, M.Z. & Elledge, S.J.S.L.I.C. SLIC: a method for sequence- and ligation-independent cloning. Methods Mol. Biol. 852, 51–59 (2012).

    CAS  Google Scholar 

  50. 50

    Dementin, S. et al. Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers. J. Am. Chem. Soc. 128, 5209–5218 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    CAS  Google Scholar 

  52. 52

    Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).

    CAS  PubMed  Google Scholar 

  54. 54

    Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

    Google Scholar 

  55. 55

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  56. 56

    Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

Download references


We thank F. Grein and M. Martins for advice and helpful discussions, R. Coelho and S. Silva for help with crystallization procedures and S. Zacarias for experimental assistance; ESRF, DLS and SOLEIL light sources for X-ray data collection; V. Olieric (Swiss Light Source) for the 0.95-Å data collection of the anaerobically purified and crystallized r[NiFeSe] hydrogenase. This work was supported by grants PTDC/BBB-BEP/0934/2012 and PTDC/BBB-BEP/2885/2014 (to I.A.C.P. and P.M.M.) from the Fundação para a Ciência e Tecnologia (FCT/MCTES), by research units GREEN-IT (UID/Multi/04551/2013) funded by FCT/MCTES, and MOSTMICRO (project LISBOA-01-0145-FEDER-007660) co-funded by FCT/MCTES and FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI); and by Spanish MINECO/FEDER project CTQ2015-71290-R (to A.L.D.L.). M.C.M. was a recipient of fellowship SFRH/BD/60879/2009 and C.T. was a recipient of predoctoral contract BES-2013-064099 from MINECO. This work was also supported by the European Community's Seventh Framework Program (FP7/2007–2013) under grant agreement 283570 (BioStruct-X).

Author information




I.A.C.P., P.M.M. and M.C.M. conceived the study. A.R.R., K.L.K., J.D.W. and M.C.M. carried out the molecular biology work. M.C.M. and I.A.C.P. produced and characterized hydrogenase variants. M.C.M. and P.M.M. were involved in crystallization and structure determination. O.G.-S., C.T. and A.L.D.L. carried out FTIR and MS experiments. I.A.C.P., P.M.M. and M.C.M. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Pedro M Matias or Inês A C Pereira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–9 (PDF 1516 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, M., Tapia, C., Gutiérrez-Sanz, O. et al. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat Chem Biol 13, 544–550 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing