Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

β2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ

Abstract

Cells express several G-protein-coupled receptors (GPCRs) at their surfaces, transmitting simultaneous extracellular hormonal and chemical signals into cells. A comprehensive understanding of mechanisms underlying the integrated signaling response induced by distinct GPCRs is thus required. Here we found that the β2-adrenergic receptor, which induces a short cAMP response, prolongs nuclear cAMP and protein kinase A (PKA) activation by promoting endosomal cAMP production in parathyroid hormone (PTH) receptor signaling through the stimulatory action of G protein Gβγ subunits on adenylate cyclase type 2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synergistic action of β2AR on PTHR signaling.
Figure 2: Gβγ and AC2 control of endosomal cAMP production by PTH.

Similar content being viewed by others

References

  1. Feinstein, T.N. et al. Nat. Chem. Biol. 7, 278–284 (2011).

    Article  CAS  Google Scholar 

  2. Nagao, M. et al. Proc. Natl. Acad. Sci. USA 108, 17767–17772 (2011).

    Article  CAS  Google Scholar 

  3. Wehbi, V.L. et al. Proc. Natl. Acad. Sci. USA 110, 1530–1535 (2013).

    Article  CAS  Google Scholar 

  4. Ferrandon, S. et al. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  Google Scholar 

  5. Hanyu, R. et al. Proc. Natl. Acad. Sci. USA 109, 7433–7438 (2012).

    Article  CAS  Google Scholar 

  6. Hagiwara, M. et al. Mol. Cell. Biol. 13, 4852–4859 (1993).

    Article  CAS  Google Scholar 

  7. Harootunian, A.T. et al. Mol. Biol. Cell 4, 993–1002 (1993).

    Article  CAS  Google Scholar 

  8. Isensee, J. et al. J. Cell Sci. 127, 216–229 (2014).

    Article  CAS  Google Scholar 

  9. Zhang, P. et al. Science 335, 712–716 (2012).

    Article  CAS  Google Scholar 

  10. Manni, S., Mauban, J.H., Ward, C.W. & Bond, M. J. Biol. Chem. 283, 24145–24154 (2008).

    Article  CAS  Google Scholar 

  11. Vilardaga, J.P. et al. Nat. Chem. Biol. 4, 126–131 (2008).

    Article  CAS  Google Scholar 

  12. Koch, W.J., Hawes, B.E., Inglese, J., Luttrell, L.M. & Lefkowitz, R.J. J. Biol. Chem. 269, 6193–6197 (1994).

    CAS  PubMed  Google Scholar 

  13. Lin, Y. & Smrcka, A.V. Mol. Pharmacol. 80, 551–557 (2011).

    Article  CAS  Google Scholar 

  14. Federman, A.D., Conklin, B.R., Schrader, K.A., Reed, R.R. & Bourne, H.R. Nature 356, 159–161 (1992).

    Article  CAS  Google Scholar 

  15. Dupré, D.J., Robitaille, M., Rebois, R.V. & Hébert, T.E. Annu. Rev. Pharmacol. Toxicol. 49, 31–56 (2009).

    Article  Google Scholar 

  16. Conley, J.M. et al. J. Pharmacol. Exp. Ther. 347, 276–287 (2013).

    Article  CAS  Google Scholar 

  17. Daaka, Y., Luttrell, L.M. & Lefkowitz, R.J. Nature 390, 88–91 (1997).

    Article  CAS  Google Scholar 

  18. Baillie, G.S. et al. Proc. Natl. Acad. Sci. USA 100, 940–945 (2003).

    Article  CAS  Google Scholar 

  19. Mlakar, V. et al. J. Cell. Mol. Med. 19, 1520–1529 (2015).

    Article  CAS  Google Scholar 

  20. Fonseca, T.L. et al. J. Bone Miner. Res. 26, 591–603 (2011).

    Article  CAS  Google Scholar 

  21. Cooper, D.M. & Tabbasum, V.G. Biochem. J. 462, 199–213 (2014).

    Article  CAS  Google Scholar 

  22. Quitterer, U. & Lohse, M.J. Proc. Natl. Acad. Sci. USA 96, 10626–10631 (1999).

    Article  CAS  Google Scholar 

  23. Temkin, P. et al. Nat. Cell Biol. 13, 715–721 (2011).

    Article  Google Scholar 

  24. McGarvey, J.C. et al. J. Biol. Chem. 291, 10986–11002 (2016).

    Article  CAS  Google Scholar 

  25. Gidon, A. et al. Nat. Chem. Biol. 10, 707–709 (2014).

    Article  CAS  Google Scholar 

  26. Bastepe, M. et al. Mol. Endocrinol. 16, 1912–1919 (2002).

    Article  CAS  Google Scholar 

  27. Hynes, T.R. et al. J. Biol. Chem. 279, 30279–30286 (2004).

    Article  CAS  Google Scholar 

  28. Zhang, J., Ma, Y., Taylor, S.S. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 98, 14997–15002 (2001).

    Article  CAS  Google Scholar 

  29. Feinstein, T.N. et al. J. Biol. Chem. 288, 27849–27860 (2013).

    Article  CAS  Google Scholar 

  30. DiPilato, L.M., Cheng, X. & Zhang, J. Proc. Natl. Acad. Sci. USA 101, 16513–16518 (2004).

    Article  CAS  Google Scholar 

  31. Vilardaga, J.P. Curr. Top. Membr. 67, 101–111 (2011).

    Article  CAS  Google Scholar 

  32. Gidon, A., Feinstein, T.N., Xiao, K. & Vilardaga, J.P. Methods Cell Biol. 132, 109–126 (2016).

    Article  CAS  Google Scholar 

  33. Kahsai, A.W., Rajagopal, S., Sun, J. & Xiao, K. Nat. Protoc. 9, 1301–1319 (2014).

    Article  CAS  Google Scholar 

  34. Nobles, K.N. et al. Sci. Signal. 4, ra51 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the US National Institutes of Health (NIH) under Award numbers R01 DK087688 and R01 DK102495 (J.-P.V.), and K01AR062598 (J.M.T.), and the Cotswold Foundation Fellowship Award (F.G.J.-A.). The authors thank P. Friedman (University of Pittsburgh) for critical discussion, T. Gardella (Mass general hospital) for providing PTHTMR, and M. Bastepe (Mass general hospital) for providing GαS-knockout MEF cells.

Author information

Authors and Affiliations

Authors

Contributions

F.G.J.-A. performed all the experiments with the support of V.L.W. and J.C. K.X., provided expertise and supervised proteomic experiments. M.N. provided expertise with ROS17/2.8 cells. J.M.T. provided expertise with culture of primary osteoblasts, and J.-P.V. was responsible for the overall concept of the study, as well as writing of the manuscript and data analysis with F.G.J.-A.

Corresponding author

Correspondence to Jean-Pierre Vilardaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–16. (PDF 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jean-Alphonse, F., Wehbi, V., Chen, J. et al. β2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ. Nat Chem Biol 13, 259–261 (2017). https://doi.org/10.1038/nchembio.2267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing