Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The RNA helicase Mtr4p is a duplex-sensing translocase

Abstract

The conserved Saccharomyces cerevisiae Ski2-like RNA helicase Mtr4p plays essential roles in eukaryotic nuclear RNA processing. RNA helicase activity of Mtr4p is critical for biological functions of the enzyme, but the molecular basis for RNA unwinding is not understood. Here, single-molecule high-resolution optical trapping measurements reveal that Mtr4p unwinds RNA duplexes by 3′-to-5′ translocation on the loading strand, that strand separation occurs in discrete steps of 6 base pairs and that a single Mtr4p molecule performs consecutive unwinding steps. We further show that RNA unwinding by Mtr4p requires interaction with upstream RNA duplex. Inclusion of Mtr4p within the TRAMP complex increases the rate constant for unwinding initiation but does not change the characteristics of Mtr4p's helicase mechanism. Our data indicate that Mtr4p utilizes a previously unknown unwinding mode that combines aspects of canonical translocating helicases and non-canonical duplex-sensing helicases, thereby restricting directional translocation to duplex regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of Mtr4p unwinding RNA duplex via high-resolution optical trapping.
Figure 2: Mtr4p unwinding rates versus tether tension and nucleotide composition for unwinding the 16-bp RNA hairpin.
Figure 3: Mtr4p unwinding 32-bp-long RNA hairpins.
Figure 4: Observation of TRAMP unwinding RNA.
Figure 5: Mtr4p RNA unwinding model.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schneider, C. & Tollervey, D. Threading the barrel of the RNA exosome. Trends Biochem. Sci. 38, 485–493 (2013).

    Article  CAS  Google Scholar 

  2. Anderson, J.T. & Wang, X. Nuclear RNA surveillance: no sign of substrates tailing off. Crit. Rev. Biochem. Mol. Biol. 44, 16–24 (2009).

    Article  CAS  Google Scholar 

  3. Bernstein, J., Patterson, D.N., Wilson, G.M. & Toth, E.A. Characterization of the essential activities of Saccharomyces cerevisiae Mtr4p, a 3′>5′ helicase partner of the nuclear exosome. J. Biol. Chem. 283, 4930–4942 (2008).

    Article  CAS  Google Scholar 

  4. Schmidt, K. & Butler, J.S. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. Wiley Interdiscip. Rev. RNA 4, 217–231 (2013).

    Article  CAS  Google Scholar 

  5. Bernstein, J. & Toth, E.A. Yeast nuclear RNA processing. World J. Biol. Chem. 3, 7–26 (2012).

    Article  Google Scholar 

  6. de la Cruz, J., Kressler, D., Tollervey, D. & Linder, P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J. 17, 1128–1140 (1998).

    Article  CAS  Google Scholar 

  7. Sloan, K.E., Bohnsack, M.T., Schneider, C. & Watkins, N.J. The roles of SSU processome components and surveillance factors in the initial processing of human ribosomal RNA. RNA 20, 540–550 (2014).

    Article  CAS  Google Scholar 

  8. van Hoof, A., Lennertz, P. & Parker, R. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20, 441–452 (2000).

    Article  CAS  Google Scholar 

  9. Wang, X., Jia, H., Jankowsky, E. & Anderson, J.T. Degradation of hypomodified tRNA(iMet) in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p. RNA 14, 107–116 (2008).

    Article  Google Scholar 

  10. Jia, H. et al. The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex. Cell 145, 890–901 (2011).

    Article  CAS  Google Scholar 

  11. Vanácová, S. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 3, e189 (2005).

    Article  Google Scholar 

  12. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005).

    Article  CAS  Google Scholar 

  13. Callahan, K.P. & Butler, J.S. TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J. Biol. Chem. 285, 3540–3547 (2010).

    Article  CAS  Google Scholar 

  14. Jia, H., Wang, X., Anderson, J.T. & Jankowsky, E. RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex. Proc. Natl. Acad. Sci. USA 109, 7292–7297 (2012).

    Article  CAS  Google Scholar 

  15. Johnson, S.J. & Jackson, R.N. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol. 10, 33–43 (2013).

    Article  CAS  Google Scholar 

  16. Taylor, L.L. et al. The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding. Nucleic Acids Res. 42, 13861–13872 (2014).

    Article  CAS  Google Scholar 

  17. Lange, H., Sement, F.M. & Gagliardi, D. MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana. Plant J. 68, 51–63 (2011).

    Article  CAS  Google Scholar 

  18. Li, Y., Burclaff, J. & Anderson, J.T. Mutations in Mtr4 structural domains reveal their important role in regulating tRNAiMet turnover in Saccharomyces cerevisiae and Mtr4p enzymatic activities in vitro. PLoS One 11, e0148090 (2016).

    Article  Google Scholar 

  19. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011).

    Article  CAS  Google Scholar 

  20. Anderson, J.S. & Parker, R.P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506 (1998).

    Article  CAS  Google Scholar 

  21. Jarmoskaite, I. & Russell, R. RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83, 697–725 (2014).

    Article  CAS  Google Scholar 

  22. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  23. Büttner, K., Nehring, S. & Hopfner, K.P. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat. Struct. Mol. Biol. 14, 647–652 (2007).

    Article  Google Scholar 

  24. Jackson, R.N. et al. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J. 29, 2205–2216 (2010).

    Article  CAS  Google Scholar 

  25. Weir, J.R., Bonneau, F., Hentschel, J. & Conti, E. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc. Natl. Acad. Sci. USA 107, 12139–12144 (2010).

    Article  CAS  Google Scholar 

  26. Pyle, A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  Google Scholar 

  27. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  Google Scholar 

  28. Yang, Q. & Jankowsky, E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat. Struct. Mol. Biol. 13, 981–986 (2006).

    Article  CAS  Google Scholar 

  29. Yang, Q., Del Campo, M., Lambowitz, A.M. & Jankowsky, E. DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell 28, 253–263 (2007).

    Article  CAS  Google Scholar 

  30. Linder, P. & Jankowsky, E. From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011).

    Article  CAS  Google Scholar 

  31. Comstock, M.J., Ha, T. & Chemla, Y.R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods 8, 335–340 (2011).

    Article  CAS  Google Scholar 

  32. Comstock, M.J. et al. Protein structure. Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348, 352–354 (2015).

    Article  CAS  Google Scholar 

  33. Dumont, S. et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108 (2006).

    Article  CAS  Google Scholar 

  34. Qu, X., Lancaster, L., Noller, H.F., Bustamante, C. & Tinoco, I. Jr. Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proc. Natl. Acad. Sci. USA 109, 14458–14463 (2012).

    Article  CAS  Google Scholar 

  35. Bustamante, C., Chemla, Y.R., Forde, N.R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  Google Scholar 

  36. Putnam, A.A. & Jankowsky, E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim. Biophys. Acta 1829, 884–893 (2013).

    Article  CAS  Google Scholar 

  37. Tinoco, I. Jr., Collin, D. & Li, P.T. The effect of force on thermodynamics and kinetics: unfolding single RNA molecules. Biochem. Soc. Trans. 32, 757–760 (2004).

    Article  CAS  Google Scholar 

  38. Cisse, I.I., Kim, H. & Ha, T. A rule of seven in Watson-Crick base-pairing of mismatched sequences. Nat. Struct. Mol. Biol. 19, 623–627 (2012).

    Article  CAS  Google Scholar 

  39. Greenleaf, W.J., Frieda, K.L., Foster, D.A., Woodside, M.T. & Block, S.M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008).

    Article  CAS  Google Scholar 

  40. Jankowsky, E., Gross, C.H., Shuman, S. & Pyle, A.M. The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403, 447–451 (2000).

    Article  CAS  Google Scholar 

  41. Kawaoka, J., Jankowsky, E. & Pyle, A.M. Backbone tracking by the SF2 helicase NPH-II. Nat. Struct. Mol. Biol. 11, 526–530 (2004).

    Article  CAS  Google Scholar 

  42. Beran, R.K., Bruno, M.M., Bowers, H.A., Jankowsky, E. & Pyle, A.M. Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track. J. Mol. Biol. 358, 974–982 (2006).

    Article  CAS  Google Scholar 

  43. Cheng, W., Arunajadai, S.G., Moffitt, J.R., Tinoco, I. Jr. & Bustamante, C. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333, 1746–1749 (2011).

    Article  CAS  Google Scholar 

  44. Liu, S. et al. A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157, 702–713 (2014).

    Article  CAS  Google Scholar 

  45. Johnson, D.S., Bai, L., Smith, B.Y., Patel, S.S. & Wang, M.D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309 (2007).

    Article  CAS  Google Scholar 

  46. Qi, Z., Pugh, R.A., Spies, M. & Chemla, Y.R. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. eLife 2, e00334 (2013).

    Article  Google Scholar 

  47. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  Google Scholar 

  48. Thoms, M. et al. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162, 1029–1038 (2015).

    Article  CAS  Google Scholar 

  49. Landry, M.P., McCall, P.M., Qi, Z. & Chemla, Y.R. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys. J. 97, 2128–2136 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Comstock and Jankowsky laboratories for scientific discussion. Funding was provided by US National Science Foundation grant MCB-1514706 (to M.J.C.) and US National Institutes of Health grants R01 GM118088 and GM099720 (to E.J.).

Author information

Authors and Affiliations

Authors

Contributions

M.J.C., E.J. and E.M.P. conceived and designed the high-resolution single-molecule trapping experiments. E.M.P. produced tether constructs and performed all single-molecule experiments. E.M.P. and M.J.C. performed single-molecule data analysis. S.S. produced Mtr4p and TRAMP samples and performed all ensemble experiments and data analysis. E.M.P., S.S., E.J. and M.J.C. wrote the paper.

Corresponding author

Correspondence to Matthew J Comstock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–9. (PDF 1314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, E., Srinivasan, S., Jankowsky, E. et al. The RNA helicase Mtr4p is a duplex-sensing translocase. Nat Chem Biol 13, 99–104 (2017). https://doi.org/10.1038/nchembio.2234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing